Reference is now made to the accompanying figures depicting aspects of the present invention, in which:
An annular seal 48 is provided around the upstream end 44 of the outer wall 34. The annular seal 48 serves to restrict the ingestion of hot combustion gases into the interspace 46. The annular seal 48 is made of a resilient heat-resistant non-metallic packing, such as, braided ceramic fiber with an optional sheath made from cobalt or nickel alloy. The annular seal 48 can have a round cross section, with an outside diameter of 0.250 inch, for instance.
The outer wall 34 may include an annular seal holder 50 to restrict the longitudinal displacement of the annular seal 48 along the outer wall 34. The upstream end 44 of the outer wall 34 has a flange 52 oriented radially outwardly and forming a first part of the annular seal holder 50. The annular seal holder 50 may include a bracket 54 rigidly connected to the outer surface 56 of the outer wall 34 and having a second flange 58, parallel to and adjacent to the first flange 52, the second flange 58 forming the second part of the annular seal holder 50. The bracket 54 has a substantially L-shaped cross section. The annular seal 48 is thus positioned between the first flange 52 and the second flange 58, and is thereby restrained from longitudinal displacement along the outer wall 34. Alternately, the second flange 58 can be provided in the turbine casing 38.
During operation of the gas turbine engine 10, heat and pressure increase within the ITD 24. This generates a force which pushes the outer wall 34 toward the turbine casing 38. This results in compressing the annular seal 48 and contributing to the sealing engagement.
The above description is meant to be exemplary only, and one skilled in the art will recognize that changes may be made to the embodiments described without departing from the scope of the invention disclosed. For example, the annular seal can be used with other types of ITDs than the one illustrated herein. Other types of annular seal holders can be used to maintain the longitudinal position of the annular seal. For example, the second flange can be radially inwardly-oriented and be provided on the turbine casing rather than on the outer wall. Further, the seal holder is optional since certain turbine casing and ITD configurations may limit the longitudinal displacement of the annular seal without the use of an additional seal holder. Several such alternate configurations for retaining the annular seal will be readily devised by those skilled in the art given the teachings of the present description. Still other modifications which fall within the scope of the present invention will be apparent to those skilled in the art, in light of a review of this disclosure, and such modifications are intended to fall within the appended claims.