This application claims priority to provisional application 61/468,979 filed Mar. 30, 2011.
This invention relates in general to wellhead assemblies and in particular to a seal nose ring that improves lockdown to a casing hanger.
Seals are used between inner and outer wellhead tubular members to contain internal well pressure. The inner wellhead member may be a casing hanger located in a wellhead housing and that supports a string of casing extending into the well. A seal or packoff seals between the casing hanger and the wellhead housing. Alternatively, the inner wellhead member could be a tubing hanger that supports a string of tubing extending into the well for the flow of production fluid. The tubing hanger lands in an outer wellhead member, which may be a wellhead housing, a Christmas tree, or a tubing head. A packoff or seal seals between the tubing hanger and the outer wellhead member.
A variety of seals located between the inner and outer wellhead members have been employed in the prior art. Prior art seals include elastomeric and partially metal and elastomeric rings. Prior art seal rings made entirely of metal for forming metal-to-metal seals (“MS”) are also employed. The seals may be set by a running tool, or they may be set in response to the weight of the string of casing or tubing. One type of prior art metal-to-metal seal has seal body with inner and outer walls separated by a cylindrical slot, forming a “U” shape. An energizing ring is pushed into the slot in the seal to deform the inner and outer walls apart into sealing engagement with the inner and outer wellhead members, which may have wickers formed thereon. The energizing ring is typically a solid wedge-shaped member. The deformation of the seal's inner and outer walls exceeds the yield strength of the material of the seal ring, making the deformation permanent.
Thermal growth between the casing or tubing and the wellhead may occur, particularly with wellheads located at the surface, rather than subsea. The well fluid flowing upward through the tubing heats the string of tubing, and to a lesser degree the surrounding casing. The temperature increase may cause the tubing hanger and/or casing hanger to move axially a slight amount relative to the outer wellhead member. During the heat up transient, the tubing hanger and/or casing hanger can also move radially due to temperature differences between components and the different rates of thermal expansion from which the component materials are constructed. If the seal has been set as a result of a wedging action where an axial displacement of energizing rings induces a radial movement of the seal against its mating surfaces, then sealing forces may be reduced if there is movement in the axial direction due to pressure or thermal effects. A reduction in axial force on the energizing ring results in a reduction in the radial inward and outward forces on the inner and outer walls of the seal ring, which may cause the seal to leak. A loss of radial loading between the seal and its mating surfaces due to thermal transients may also cause the seal to leak. One approach to preventing this type of movement is through the use of lockdown C-rings on the seal that rest in a machined pocket on the energizing ring. The C-ring engages the hanger when the seal is set, locking the seal to the hanger. Another approach has been to use the sealing element itself as a locking mechanism. In these approaches, lockdown is thus provided by the seal. Further, a lockdown style hanger may be utilized to lock the casing hanger in place. This requires an extra trip to lower the lockdown style hanger.
A need exists for a technique that addresses the seal leakage problems described above by providing additional lockdown capacity in a cost-effective way. The following technique may solve one or more of these problems.
In an embodiment of the present invention, a seal assembly is located between a wellhead housing having a bore and a casing hanger. The housing is typically located at an upper end of a well and serves as an outer wellhead member. The casing hanger has an upward facing shoulder for supporting a lower portion of the seal assembly. A metal-to-metal seal assembly has an inner seal leg with an inner wall sealing against the cylindrical wall of casing hanger and an outer seal leg with an outer wall surface that seals against wellhead housing bore. The seal legs form a U-shaped pocket or slot. An extension extends downward from the outer seal leg and may have a threaded connection. However, it is not necessary that the connection be threaded. The extension has a downward facing shoulder that rests on an upward facing shoulder formed on a nose ring. The connection connects the seal ring to the nose ring with a lower portion of the nose ring resting on the upward facing shoulder of the casing hanger to provide a reaction point during setting operations. In this embodiment, a plurality of bellows are formed on the nose ring to advantageously increase lockdown capacity of the seal assembly. The bellows may be formed in a helical shape and have an inner surface that faces an outer profile of the hanger, and an outer surface on the bellows that faces the bore of the housing. Each of the bellows may have legs that form a “V” or “U” shape with gaps formed between the outer surfaces of the bellows. Similarly, gaps are formed between the inner surfaces of the bellows. When the seal assembly is set, the bellows will collapse, reducing a width of the gaps as the bellows expand inward and outward into the outer profile of the hanger and the bore of the housing.
The bellows on the nose ring provide a mechanism of locking down the hanger in addition to those in the prior art. Thus, lockdown capacity is advantageously increased by sharing upward forces on the hanger among the present invention and these mechanisms of the prior art. In addition, the present invention may also advantageously save the time and money associated with having to re-trip in order to install a lockdown hanger.
Referring to
An extension 32 extends downward from the outer leg 26 and may have a threaded connection 34. However, it is not necessary that the connection be threaded. The extension 32 has a downward facing shoulder 36 that rests on an upward facing shoulder 38 formed on a nose ring 37. The threaded connection 34 connects the seal ring 25 to the nose ring 37. A lower portion 39 of the nose ring rests on the upward facing shoulder 19 of the casing hanger 18 to provide a reaction point during setting operations. In this embodiment, a plurality of bellows 40 are formed on the nose ring 37 to increase lockdown capacity of the seal assembly. The bellows 40 may be formed in a helical shape. The bellows 40 have an inner surface 42 that faces an outer profile 43 of the hanger 18. In this embodiment, the outer profile 43 has a slight taper, however, the outer profile 43 may also be formed without taper. An outer surface 46 on the bellow 40 faces the bore 12 of the housing 10. A bellows thickness from inner to outer surfaces 42, 46 of the bellows 40 may vary as the inner surface 42 follows the taper of the outer profile 43 of the hanger 18. Each of the bellows may have undulation 44 that form a “V” or “U” shape. Gaps 48 are formed between the outer surfaces 46 of the bellows 40. Similarly, gaps 50 are formed between the inner surfaces 42 of the bellows 50. The gaps may be between 0.010 to 0.75 inches before setting. When the seal assembly is set, as shown in
The bellows 40 on the nose ring 37 provide a mechanism of locking down the hanger 18 in addition to those in the prior art.
Continuing to refer to
During setting operation, the seal assembly, including the seal ring and nose ring 37, is landed on the upward facing shoulder 19 of the hanger 18. The seal assembly is located between the hanger 18 and housing 10. The energizing ring 60 is forced downward by the running tool or the weight of the string. The reaction point formed between the upward facing shoulder 19 of the hanger 18 and the downward facing shoulder 39 of the nose ring 37 allow the force applied on the energizing ring 60 to move energizing ring into the slot 30 of the seal ring 25. When the energizing ring 60 moves into the pocket 30, it deforms the inner and outer seal legs 22, 26 of the seal ring 25 against the housing 10 and the hanger 18. The force applied via the energizing ring 60 also axially collapses and radially expands the outer diameter of bellows 40. The inner diameter of bellows 40 contracts radially. The inner surface 42 of the bellows 40 contacts the outer profile 43 of the hanger 18 and the outer surface 46 of the bellows 40 contacts the bore 12 of the housing 10. The radial distance from the inner diameter to the outer diameter of bellows 40 when fully axially contracted is greater than the radial distance from hanger profile 43 to wellhead housing bore 12.
This engagement by the expanded bellows 40 with the hanger 18 and housing 10 provides a rigid stop for the seal assembly, allowing the seal to be fully set, as shown in
Further, force from the bellows 40 of the nose ring 37 may be sufficient to deform the outer profile 43 of the hanger 18 or bore 12 of the housing 10. In such cases, this will further increase lockdown capacities.
In another embodiment shown in
In another embodiment, the bellows 40 portion of the nose ring 37 may be made of a material with a different coefficient of thermal expansion than the hanger 18 and housing 10 that allow bellows 40 to thermally expand at a greater rate, thus adding to its lockdown capacities.
In yet another embodiment shown in
This written description uses examples to disclose the invention, including the best mode, and also to enable any person skilled in the art to practice the invention, including making and using any devices or systems and performing any incorporated methods. These embodiments are not intended to limit the scope of the invention. The patentable scope of the invention is defined by the claims, and may include other examples that occur to those skilled in the art. Such other examples are intended to be within the scope of the claims if they have structural elements that do not differ from the literal language of the claims, or if they include equivalent structural elements with insubstantial differences from the literal language of the claims.
Number | Name | Date | Kind |
---|---|---|---|
3649032 | Nelson | Mar 1972 | A |
4702481 | Brammer | Oct 1987 | A |
4751965 | Cassity | Jun 1988 | A |
4949787 | Brammer et al. | Aug 1990 | A |
5067734 | Boehm, Jr. | Nov 1991 | A |
5456314 | Boehm, Jr. et al. | Oct 1995 | A |
6182755 | Mansure | Feb 2001 | B1 |
7748467 | Doane | Jul 2010 | B2 |
20100116489 | Nelson | May 2010 | A1 |
20100147533 | Nelson | Jun 2010 | A1 |
20100300705 | Nelson | Dec 2010 | A1 |
20110174506 | Duong | Jul 2011 | A1 |
Number | Date | Country |
---|---|---|
2354441 | Aug 2011 | EP |
2375575 | Nov 2002 | GB |
2462520 | Feb 2010 | GB |
Entry |
---|
GB Search Report dated Jul. 20, 2012 from corresponding Application No. GB1205498.7. |
Number | Date | Country | |
---|---|---|---|
20120247788 A1 | Oct 2012 | US |
Number | Date | Country | |
---|---|---|---|
61468979 | Mar 2011 | US |