This invention relates to seals for sealing a circumferential gap between two machine components that are relatively rotatable with respect to each other, and, more particularly, to a seal having at least one shoe extending along one of the machine components in a position to create a non-contact seal therewith, and at least two sealing elements oriented side-by-side which contact the at least one shoe to assist in creating a secondary seal of the gap between the two machine components.
Turbomachinery, such as gas turbine engines employed in aircraft, currently is dependent on either labyrinth (see
Other problems associated with labyrinth seals arise from heat generation due to knife edge to seal land rub, debris from hardcoated knife edges or seal lands being carried through engine passages, and excessive engine vibration. When seal teeth rub against seal lands, it is possible to generate large amounts of heat. This heat may result in reduced material strength and may even cause destruction of the seal if heat conducted to the rotor causes further interference. It is possible to reduce heat generation using abradable seal lands, but they must not be used in situations where rub debris will be carried by leakage air directly into critical areas such as bearing compartments or carbon seal rubbing contacts. This also holds true for hardcoats applied to knife edges to increase rub capability. Other difficulties with hardcoated knife edges include low cycle fatigue life debits, rub induced tooth-edge cracking, and the possibility of handling damage. Engine vibration is another factor to be considered when implementing labyrinth seals. As mentioned previously, this vibration can be caused by improper maintenance of radial clearances. However, it can also be affected by the spacing of labyrinth seal teeth, which can produce harmonics and result in high vibratory stresses.
In comparison to labyrinth seals, brush seals can offer very low leakage rates. For example, flow past a single stage brush seal is approximately equal to a four knife edge labyrinth seal at the same clearance. Brush seals are also not as dependent on radial clearances as labyrinth seals. Leakage equivalent to approximately a 2 to 3 mil gap is relatively constant over a large range of wire-rotor interferences. However, with current technology, all brush seals will eventually wear to line on line contact at the point of greatest initial interference. Great care must be taken to insure that the brush seal backing plate does not contact the rotor under any circumstances. It is possible for severing of the rotor to occur from this type of contact. In addition, undue wire wear may result in flow increases up to 800% and factors such as changes in extreme interference, temperature and pressure loads, and rubbing speeds must be taken into account when determining seal life.
The design for common brush seals, as seen in
Brush seals may be used in a wide variety of applications. Although brush seal leakage generally decreases with exposure to repeated pressure loading, incorporating brush seals where extreme pressure loading occurs may cause a “blow over” condition resulting in permanent deformation of the seal wires. Brush seals have been used in sealing bearing compartments, however coke on the wires may result in accelerated wear and their leakage rate is higher than that of carbon seals.
One additional limitation of brush seals is that they are essentially uni-directional in operation, i.e., due to the angulation of the individual wires, such seals must be oriented in the direction of rotation of the moving element. Rotation of the moving element or rotor in the opposite direction, against the angulation of the wires, can result in permanent damage and/or failure of the seal. In the particular application of the seals required in the engine of a V-22 Osprey aircraft, for example, it is noted that during the blade fold wing stow operation, the engine rotates in reverse at very low rpm's. This is required to align rotor blades when stowing wings. This procedure is performed for creating a smaller aircraft footprint onboard an aircraft carrier. Reverse rotation of the engine would damage or create failure of brush seals such as those depicted in
Carbon seals are generally used to provide sealing of oil compartments and to protect oil systems from hot air and contamination. Their low leakage rates in comparison to labyrinth or brush seals are well-suited to this application but they are very sensitive to pressure balances and tolerance stack-ups. Pressure gradients at all operating conditions and especially at low power and idle conditions must be taken into account when considering the use of carbon seals. Carbon seals must be designed to have a sufficiently thick seal plate and the axial stack load path must pass through the plate as straight as possible to prevent coning of the seal. Another consideration with carbon seals is the potential for seepage, weep age or trapped oil. Provisions must be made to eliminate these conditions which may result in oil fire, rotor vibration, and severe corrosion.
According to the Advanced Subsonic Technology Initiative as presented at the NASA Lewis Research Center Seals Workshop, development of advanced sealing techniques to replace the current seal technologies described above will provide high returns on technology investments. These returns include reducing direct operating costs by up to 5%, reducing engine fuel burn up to 10%, reducing engine oxides of emission by over 50%, and reducing noise by 7 dB. For example, spending only a fraction of the costs needed to redesign and re-qualify complete compressor or turbine components on advanced seal development can achieve comparable performance improvements. In fact, engine studies have shown that by applying advanced seals techniques to just a few locations can result in reduction of 2.5% in SFC.
This invention is directed to a hybrid, non-contact seal for sealing the circumferential gap between a first machine component such as a stator and a second machine component such as a rotor which is rotatable relative to the stator.
In the presently preferred embodiment, the hybrid seal comprises at least one shoe extending along one of the rotor and stator in a position to create a non-contact seal therewith. At least one spring element is connected between one of the rotor and stator and the at least one shoe. The spring element(s) is flexible in the radial direction, but axially stiff so that it can function to assist in preventing roll over of the shoes with respect to the rotor or stator where it is located, thus maintaining an effective seal under pressure load. Preferably, stops are provided to limit the extent of radial motion of the shoe with respect to the rotor or stator. The spring elements deflect and move with the shoe(s) in response to the application of fluid pressure to the shoe(s) to create a primary seal, within design tolerances, along the gap between the machine components.
The shoe(s) is formed with a slot that receives at least two sealing elements which are oriented side-by-side and are connected to one of the first and second machine components. The sealing elements radially deflect and move with the shoe(s) in response to the application of fluid pressure applied to the shoe(s) to assist in the creation of a secondary seal along the gap between the machine components. Preferably, each of the sealing elements comprises an annular plate, which, in alternative embodiments described below, may be formed with structure to enhance the radial deflection thereof. The sealing elements may be formed of sheet metal of varying thickness, or other suitable heat-resistant, flexible material.
The hybrid seal of this invention can be utilized in all seal applications, including labyrinth, brush and carbon. The robust design eliminates the careful handling now required of carbon seals utilized in lube system compartments. This seal may allow the engine designer to utilize less parts in the assembly as this seal will permit “blind” assemblies to occur.
The following table provides a comparison of the seal of the subject invention with currently available technology.
The structure, operation and advantages of this invention will become further apparent upon consideration of the following description, taken in conjunction with the accompanying drawings, wherein:
Referring now to
Under some operating conditions, particularly at higher pressures, it is desirable to limit the extent of radial movement of the shoes 16 with respect to the rotor 14 to maintain tolerances, e.g. the spacing between the shoes 16 and the facing surface of the rotor 14. The seal 10 preferably includes a number of circumferentially spaced spring elements 24, the details of one of which are best seen in
A second stop 40 is connected to or integrally formed with the shoe 16. The second stop 40 is circumferentially spaced from the first stop 30 in a position near the point at which the inner and outer bands 26 and 28 connect to the stator 12. The second stop 40 is formed with an arm 42 which may be received within a recess 44 in the stator 12. The recess 44 has a shoulder 46 positioned in alignment with the arm 42 of second stop 40.
Particularly when the seal 10 of this invention is used in applications such as gas turbine engines, aerodynamic forces are developed which apply a fluid pressure to the shoe 16 causing it to move radially inwardly toward the rotor 14. The spring elements 24 deflect and move with the shoe 16 to create a primary seal of the circumferential gap 11 between the rotor 14 and stator 12. The purpose of first and second stops 30 and 40 is to limit the extent of radially inward and outward movement of the shoe 16 with respect to the rotor 14. A gap is provided between the arm 34 of first stop 30 and the shoulder 38, and between the arm 42 of second stop 40 and shoulder 46, such that the shoe 16 can move radially inwardly relative to the rotor 14. Such inward motion is limited by engagement of the arms 34, 42 with shoulders 38 and 46, respectively, to prevent the shoe 16 from contacting the rotor 14 or exceeding design tolerances for the gap between the two. The arms 34 and 42 also contact the stator 12 in the event the shoe 16 moves radially outwardly relative to the rotor 14, to limit movement of the shoe 16 in that direction.
Referring now to
In the presently preferred embodiment, the spring elements 48 and 50 are formed of sheet metal or other suitable flexible, heat-resistant material. The sealing elements 48 and 50 may be affixed to one another, such as by welding, a mechanical connection or the like, or they may merely placed side-by-side within the slot 22 with no connection between them. In order to prevent fluid from passing through the openings 54 in the outer ring 52 of each sealing element 48 and 50, adjacent sealing elements are arranged so that the outer ring 52 of one sealing element 48 covers the openings 54 in the adjacent sealing element 50. Although not required, a front plate 60 may be positioned between the spring element 24 and the sealing element 48, and a back plate 62 may be located adjacent to the sealing element 50 for the purpose of assisting in supporting the sealing elements 48, 50 in position within the shoe 16. See
Referring now to
An alternative embodiment of a sealing element 84 is depicted in
Referring now to
Each of the annular plates 72, 86 and 104 is preferably formed of sheet metal or other suitable flexible and heat-resistant material. Two or more sealing elements 70, 84 or 102 are preferably employed to assist in the formation of a secondary seal of the gap 11 between the rotor 14 and stator. The sealing elements 70, 84 or 102 are oriented side-by-side and positioned within the slot 22 formed in the shoe 16, in the same manner as sealing elements 48 and 50 depicted in
While the invention has been described with reference to a preferred embodiment, it should be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the invention. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from the essential scope thereof. Therefore, it is intended that the invention not be limited to the particular embodiments disclosed as the best mode contemplated for carrying out the invention, but that the invention will include all embodiments falling within the scope of the appended claims.
This application is a continuation-in-part application of U.S. patent application Ser. No. 11/953,099 filed Dec. 10, 2007 which is a continuation-in-part of U.S. patent application Ser. No. 11/669,454 filed Jan. 31, 2007 and now U.S. Pat. No. 7,410,173 granted Aug. 12, 2008, which is a continuation-in-part application of U.S. patent application Ser. No. 11/226,836 filed Sep. 14, 2005 and now U.S. Pat. No. 7,182,345 granted Feb. 27, 2007, which is a continuation of U.S. patent application Ser. No. 10/832,053 filed Apr. 26, 2004, now abandoned, which claims the benefit of U.S. Provisional Application Ser. No. 60/466,979 filed May 1, 2003 now expired, under 35 U.S.C. §119(e) for all commonly disclosed subject matter. U.S. Provisional Application Ser. No. 60/466,979 is expressly incorporated herein by reference in its entirety to form part of the present disclosure.
Number | Name | Date | Kind |
---|---|---|---|
3917150 | Ferguson et al. | Nov 1975 | A |
3975114 | Kalkbrenner | Aug 1976 | A |
4411594 | Pellow et al. | Oct 1983 | A |
4600202 | Schaeffler et al. | Jul 1986 | A |
4642024 | Weidner | Feb 1987 | A |
4650394 | Weidner | Mar 1987 | A |
4676715 | Imbault et al. | Jun 1987 | A |
5026252 | Hoffelner | Jun 1991 | A |
5181728 | Stec | Jan 1993 | A |
5183197 | Howe | Feb 1993 | A |
5362072 | Dalton | Nov 1994 | A |
5503405 | Jewett et al. | Apr 1996 | A |
5669757 | Brackett | Sep 1997 | A |
5755445 | Arora | May 1998 | A |
5799952 | Morrison et al. | Sep 1998 | A |
5944320 | Werner et al. | Aug 1999 | A |
5997004 | Braun et al. | Dec 1999 | A |
6079714 | Kemsley | Jun 2000 | A |
6079945 | Wolfe et al. | Jun 2000 | A |
6254344 | Wright et al. | Jul 2001 | B1 |
6331006 | Baily et al. | Dec 2001 | B1 |
6428009 | Justak | Aug 2002 | B2 |
6435820 | Overberg | Aug 2002 | B1 |
6558041 | Laos | May 2003 | B2 |
6726446 | Arilla et al. | Apr 2004 | B2 |
6840519 | Dinc et al. | Jan 2005 | B2 |
7182345 | Justak | Feb 2007 | B2 |
7410173 | Justak | Aug 2008 | B2 |
7527469 | Zborovsky et al. | May 2009 | B2 |
7896352 | Justak | Mar 2011 | B2 |
7931276 | Szymbor et al. | Apr 2011 | B2 |
8002285 | Justak | Aug 2011 | B2 |
8172232 | Justak | May 2012 | B2 |
8500394 | Major et al. | Aug 2013 | B2 |
Number | Date | Country |
---|---|---|
957 006 | Jan 1957 | DE |
0 778 431 | Jun 1997 | EP |
355570 | Aug 1931 | GB |
4347066 | Dec 1992 | JP |
0148887 | Jul 2001 | WO |
Number | Date | Country | |
---|---|---|---|
20110121519 A1 | May 2011 | US |
Number | Date | Country | |
---|---|---|---|
60466979 | May 2003 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10832053 | Apr 2004 | US |
Child | 11226836 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11953099 | Dec 2007 | US |
Child | 13009155 | US | |
Parent | 11669454 | Jan 2007 | US |
Child | 11953099 | US | |
Parent | 11226836 | Sep 2005 | US |
Child | 11669454 | US |