Insulated cables are used to provide electrical communication to many devices. Often times, these cables include stranded copper, which has high conductivity, good corrosion resistance, and adequate mechanical strength. However, interest in weight savings and cost savings has increased interest in aluminum-based stranded cable instead of copper. However, aluminum-based cable has different properties, including conductivity, strength, and fatigue life. Perhaps more importantly, copper and aluminum-based cables have different corrosion resistance properties. For example, copper is resistant to salt and other corrosive chemicals while aluminum is resistant to atmospheric corrosion, but is susceptible to localized pitting and crevice corrosion if corrosive liquids enter gaps between the cable strands. Aluminum-based cables crimped to copper alloy or other electrical terminals are also susceptible to galvanic corrosion if an electrolyte is present.
A variety of circumstances may cause the cables to corrode faster than cables that are not exposed to such circumstances. For example, cables that are in high humidity areas or that are exposed to various environmental conditions, such as rain or snow, are more susceptible to corrosion. In geographic areas where road salt is used to melt ice, stranded cables disposed underneath carpets are especially susceptible to corrosion. Therefore, a sealant may be used to keep electrolytes, like saltwater, from making contact with aluminum-based cables to minimize corrosion. However, it is often difficult for the sealant to coat cables due to small gaps between the cable strands.
Accordingly, an aluminum-based cable is needed that has improved corrosion resistance for the cable strands and/or electrical terminals. Moreover, a method of sealing the cable, including gaps between the cable strands, is needed.
A cable includes a plurality of cable strands, an insulator disposed on a portion of the plurality of strands such that the plurality of strands are at least partially exposed, and a sealant disposed between gaps of the plurality of strands and at least partially under the insulator.
Moreover, a method includes stripping an insulator from an end of a cable to expose a plurality of cable strands, and applying a sealant to the cable strands such that the sealant is drawn under the insulator and fills in gaps between the cable strands by capillary action.
A cable includes a plurality of cable strands disposed inside an insulator. The insulator is stripped so that the cable strands are at least partially exposed. A sealant is applied to the cable strands, and the sealant is drawn under the insulator and fills in gaps between the cable strands by capillary action. Capillary action is the ability of the cable strands and insulator to wick the sealant from one place to another. Specifically, capillary action may cause the sealant to wick from one end of the cable to another end. Alternatively, capillary action may simply cause the sealant to wick from one end of the cable to at least partially under the insulator. Accordingly, the sealant is able to coat more of the cable strands and further protect the cable strands from corrosion. Additionally, filling the gaps between the cable strands with the sealant prevents the ingress of corrosive liquids.
Referring to
The sealant 18 is applied to the cable strands 12, and capillary action causes the sealant 18 to flow into and fill the gaps 16 between the strands 12 and under at least a portion of the insulator 14. In one exemplary approach, the sealant 18 may wick from one end of the cable 10 to another end. Alternatively, the sealant 18 may flow to a position a few millimeters under the insulator 14 and, in one exemplary approach, up to approximately 100 mm from the end of the cable strands 12. How much the sealant 18 flows depends on various circumstances, including the viscosity of the sealant 18, the size the gaps 16 between the strands 12, the volume of sealant 18 applied, and/or the size of the insulator 14.
Referring to
Referring to
The above description is intended to be illustrative and not restrictive. Many alternative approaches or applications other than the examples provided would be apparent to those of skill in the art upon reading the above description. The scope of the invention should be determined, not with reference to the above description, but should instead be determined with reference to the appended claims, along with the full scope of equivalents to which such claims are entitled. It is anticipated and intended that future developments will occur in the arts discussed herein, and that the disclosed systems and methods will be incorporated into such future examples. In sum, it should be understood that the invention is capable of modification and variation and is limited only by the following claims.
The present embodiments have been particularly shown and described, which are merely illustrative of the best modes. It should be understood by those skilled in the art that various alternatives to the embodiments described herein may be employed in practicing the claims without departing from the spirit and scope as defined in the following claims. It is intended that the following claims define the scope of the invention and that the method and apparatus within the scope of these claims and their equivalents be covered thereby. This description should be understood to include all novel and non-obvious combinations of elements described herein, and claims may be presented in this or a later application to any novel and non-obvious combination of these elements. Moreover, the foregoing embodiments are illustrative, and no single feature or element is essential to all possible combinations that may be claimed in this or a later application.
All terms used in the claims are intended to be given their broadest reasonable constructions and their ordinary meanings as understood by those skilled in the art unless an explicit indication to the contrary is made herein. In particular, use of the singular articles such as “a,” “the,” “said,” etc. should be read to recite one or more of the indicated elements unless a claim recites an explicit limitation to the contrary.
Number | Name | Date | Kind |
---|---|---|---|
3320665 | Morse | May 1967 | A |
3885380 | Hacker | May 1975 | A |
4572868 | Hosaka et al. | Feb 1986 | A |
5017160 | Garcia | May 1991 | A |
5151143 | Downie | Sep 1992 | A |
5520974 | Chiotis et al. | May 1996 | A |
5876528 | Nikkels et al. | Mar 1999 | A |
5888323 | Yasukuni et al. | Mar 1999 | A |
6080334 | Heimann et al. | Jun 2000 | A |
6291773 | Nikkels et al. | Sep 2001 | B1 |
7049506 | Head | May 2006 | B2 |
7230214 | Kirby | Jun 2007 | B2 |
7238884 | Tanaka et al. | Jul 2007 | B2 |
20020022409 | Caridei | Feb 2002 | A1 |
20040058575 | Nicholson | Mar 2004 | A1 |
Number | Date | Country | |
---|---|---|---|
20100084159 A1 | Apr 2010 | US |