Sealed charging port and method of charging for a heat pipe roller

Information

  • Patent Grant
  • 6286836
  • Patent Number
    6,286,836
  • Date Filed
    Tuesday, February 2, 1999
    25 years ago
  • Date Issued
    Tuesday, September 11, 2001
    23 years ago
Abstract
A roller (10) incorporating a heat pipe cavity (12) has a port (25) through which a medium (29) is flowed and a vacuum is drawn. The port (25) is sealed by a plug (20) which is lodged in a hole (14) by advance of a screw (16) against the plug (20) to form a metal-to-metal seal that will withstand pressures in the heat pipe cavity (12). A body of grease (21) is one of several ways disclosed for centering the plug (20) in the hole (14). The screw (20) can be advanced with a conventional Allen wrench or a special tool (35) having a driver head (22) on a shaft (23) that extends through a casing (24) for conveying medium or drawing a vacuum. The screw (16) has vents (28) to allow a vacuum to be drawn as the port (25) is sealed. A method of sealing is also disclosed.
Description




TECHNICAL FIELD




The invention relates to sealing of an entry port for rollers for use in a variety of industrial machines.




DESCRIPTION OF THE BACKGROUND ART




Steam-heated and induction-heated rollers are used in the paper making, printing, paper, film, and foil converting industries. Some examples are: web heating rollers, drying rollers and drums, laminating rollers, embossing rollers, and cast film extrusion rollers.




Steam-heated rollers are actually pressure vessels, especially at higher temperatures. The internal construction of both steam-heated and induction-heated cores can be quite complex and expensive in order to provide the temperature uniformity needed. In addition, a considerable amount of auxiliary equipment is needed to power or heat the roller.




Heat pipe technology has been used to control heat in various kinds of equipment used in space, remote monitoring stations and wherever heat transfer is required. A basic industrial heat pipe roller is disclosed in Noren, U.S. Pat. No. 3,700,028. As reported in Noren, “How Heat Pipes Work,”


Chemical Engineering


, Aug. 19, 1974, acceptance of heat pipes in industry has been slow. Since that time a number of heat pipe constructions have been patented, often for small rollers used in office copiers and printers. Progress has remained slow, however, for industrial and large equipment applications.




International Publication Nr. WO 98/31194, published Jul. 16, 1998, discloses a heat pipe roller having an annular cavity between an inner cylindrical core and an outer cylindrical shell. To allow evacuation of the cavity and injection of an evaporative medium into the cavity, a charging port with a threaded plug is provided in one end of the roller. In the prior art, brazing or solder was used to seal the port after evacuation of air from the cavity and flowing of the medium into the cavity.




Prior art heat pipes are also of the gun-drilled type, in which one or more elongated heat pipe tubes are inserted in longitudinally extending gun-drilled holes in a roller core.




A primary cause of failure in heat pipes is the formation of non-condensable gases. Only one percent air or other gas in the heat pipe reduces heat pipe efficiency approximately fifty percent. Non-condensable gases can form as a result of corrosion, contamination, loss of vacuum, reaction of the medium with wicking materials, or degradation of the medium.




The maintenance of the seal on a charging port is important in preventing non-condensable gases. Such a seal should be easily assembled, and yet withstand internal pressures experienced by the heat pipe. The seal must be compatible with a charging sequence in which the heat pipe cavity is evacuated of air, the medium is flowed into the cavity and the port is sealed.




SUMMARY OF THE INVENTION




The invention is incorporated in a seal assembly and a method of sealing an entry port to a heat pipe.




The port is sealed with a metal-to-metal seal in which a plug is forced into a hole by torquing a screw behind the plug. The plug is made of a softer metal than the metal forming a hole in which the plug is received. The material forming the hole forms a circular, substantially sharp edge, either at 90° or slightly chamfered, without chips, burrs or other irregularities.




The plug is made of a metal that is approximately 30% softer than the metal forming the hole, so that the plug deforms and not the hole. On the other hand, if the plug material is too soft, the seal will relax over time. Brass, copper and nickel plugs are preferred for use with a hole formed in steel.




The screw has one or more longitudinally extending vents to allow a vacuum to be drawn from the heat pipe cavity as the seal is being applied.




The invention can be applied to a roller heated by hot oil, steam, hot water, electricity or to rollers that are cooled by water or other media, and is particularly useful where heat is to be transferred to or from a moving web of material.




The invention allows a heat pipe roller to be charged in the horizontal position. The invention allows reuse of the heat pipe roller. It also allows recharging in the field.




Other objects and advantages, besides those discussed above, will be apparent to those of ordinary skill in the art from the description of the preferred embodiment which follows. In the description, reference is made to the accompanying drawings, which form a part hereof, and which illustrate examples of the invention. Such examples, however, are not exhaustive of the various embodiments of the invention, and, therefore, reference is made to the claims which follow the description for determining the scope of the invention.











BRIEF DESCRIPTION OF THE DRAWINGS





FIG. 1

a fragmentary sectional view of a sealed port of a heat pipe roller which illustrates the assembly of the present invention;





FIG. 2

is a fragmentary sectional view of the embodiment of

FIG. 1

further showing a tool for shaping a portion of the sealing port; and





FIGS. 3 and 4

are fragmentary sectional views of alternative embodiments of the invention of FIG.


1


.











DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS




Referring to

FIG. 1

, a portion of roller


10


incorporating a heat pipe cavity


12


is shown. International Pub. Nr. WO 98/31194, published Jul. 16, 1998, describes a heat pipe roller which provides the environment for the present invention, and the description of such a roller is incorporated herein by reference.




In a portion of interest shown in

FIG. 1

, the roller


10


has an inner steel core


11


, an outer shell (not shown in

FIG. 1

) and an annular heat pipe cavity


12


in between the core


11


and the shell. In one end of the core


11


, an entry port


25


, which forms part of the seal assembly of the invention, includes a hole


14


, ⅛-inch in diameter, which is drilled from the exterior into the heat pipe cavity


12


. Using the hole


14


, as a centering guide, a larger tapped hole


15


is drilled to a lesser depth to accept a ⅜-20 threaded, sockethead screw


16


. The larger hole is drilled with a bit that leaves a flat bottom


17


in the hole


15


, but which also leaves a small chamfer around the rim


19


. In this embodiment, the entry port


25


is formed in a wall of a steel roller core


11


, but in other embodiments it might be formed in the shell or between the core


11


and the shell. In still other embodiments, the heat pipes may be inserted in gun-drilled holes extending longitudinally in the roller core


11


.




A tapered, hardened punch


18


is then placed in the smaller hole


14


(

FIG. 2

) and given several light taps to reform the rim


19


around the entrance to the hole


14


. A suitable punch is provided by a {fraction (3/32)} point, {fraction (5/16)}-inch shaft, Nr.


3420


A


2


from McMaster Carr. This step reshapes the hole entrance to a circle. It also removes any burrs or irregularities around the entrance to the hole


14


. It also removes any chamfer left by the drill bit for the larger threaded hole


15


and it gives a uniform, substantially sharp edge to the rim


19


.




The next part of the seal assembly is a metal plug


20


, preferably a ball made of brass, but alternatively may be made of copper, nickel or other, soft metals. In this example, the is {fraction (3/16)} inch in diameter, which is a preferred size for the ⅛ inch entry hole


14


(1.5 times the diameter of the entry hole


14


). Other shapes of plugs are possible, including cone-shaped or bullet-shaped, but a ball is preferred. Behind the ball


20


is a headless ⅜-20 Allen-type socket-head screw


16


, which is inserted into hole


15


. Prior to insertion, a small amount of silicone grease


21


is placed in the center of the end face of the screw


16


and the ball is placed in the grease


21


. The grease


21


allows the screw


16


to slide on the surface of the ball


20


, without turning the ball


20


until the ball


20


moves far enough forward to seal the hole


14


. The screw typically has a flat end face


27


facing the hole


14


, but the face


27


can also have other surface shapes.




The screw


16


is advanced in the hole


15


with a tool, either a standard Allen wrench or the tool


35


shown in

FIG. 1

, which includes a head


22


on the end of a shaft


23


, which extends through a casing


24


for applying vacuum pressure or flowing liquid into the port


25


. To form the seal, torque is applied to the screw


16


to force the ball


20


into position in the hole


14


, and then the screw


16


is turned from ¼ to ¾ turn to push the ball into the hole


14


to a depth of ten to sixty mils to form the seal. A seal can be formed with at little as ⅛ turn and will still form up to at least one full turn.




Once the ball


20


is lodged in the hole


14


, it will withstand 1000 psi at 600° F. without being forced out of the hole


14


. Even a quarter turn of the screw


16


after contact with the hole


14


is made, will cause the ball


20


to become lodged in the hole


14


. The ball


20


can also be ¼ inch in diameter or {fraction (5/16)} inch in diameter for the ⅜ inch tapped hole


15


and ⅛ inch entry hole


14


, but more force is required to seal a larger ball


20


in the hole


14


. While the preferred size of the hole


14


is ⅛ inch, other sizes as small as {fraction (1/16)} inch or as large as ½ inch in diameter are possible.




About 30 pound-inches of torque is required to turn the screw the last ¼ turn (with a ⅛ inch diameter hole and a {fraction (3/16)} inch ball). More torque is required to turn the ball ½ turn or further. The ¼ turn results in a force of approximately 400 pounds of force against the ball. Due to the small area of contact between the ball


20


and the edge of the hole


14


, the sealing force is estimated to be in excess of 100,000 psi. In operation, the heat pipe pressure will normally be in the 14.7 to 680 psi range for roller temperatures of 212 to 500° F., when water is used as the heat pipe medium. The area of sealing provides a ring impression in the ball


20


having a line width from approximately ten mils to sixty mils. The screw


16


has air passages in the form of longitudinal slots


28


seen in FIG.


1


. These are provided for allowing the drawing of a vacuum as the port


25


is being sealed. The slots


28


extend through the threads, but could also be located in the body of the screw


16


.




Other embodiments for centering the ball


20


are illustrated in

FIGS. 3 and 4

. In

FIG. 3

, a plastic or metal ring


30


and the body of silicone grease


21


are used to center the ball


20


as the screw


16


is advanced against the ball


20


. In

FIG. 4

, the front end of a screw


16


{a is machined to provide a depression


32


for holding the ball


20


centered along the axis of the screw


16


. The shape of the depression


32


can be cylindrical, hemispherical or conical.




The operating pressure of the heat pipe is determined by the media and operating temperature. The heat pipe cavity


12


is provided with some type of over pressure device (not shown), such as a pressure relief valve or preferably a pressure-rupture disk.




The medium


29


(

FIG. 1

) for flowing into the heat pipe cavity


12


can be any material that is thermally stable, noncorrosive, and can exist both as a liquid and a gas in the temperature range in which the heat pipe will be used. For best operation, the atmospheric boiling point of the medium is slightly below the operating temperature of the heat pipe. Water boils at 100° C. (212° F.) and functions best as a medium above this temperature. But because there is a vacuum in the heat pipe (the only pressure is due to water vapor), water still works at temperatures below 65.5° C. (150° F.). A heat pipe can work efficiently well above the atmospheric boiling point and can also work reasonably well at low pressure. A low operating pressure allows the outer shell of the roller


10


to be relatively thin. At 260° C. (500° F.), water has a vapor pressure of 47.804 kg/cm.


2


(680 psi) making it less desirable as the heat-conducting medium


29


except in rollers with very strong, thick walls around the heat pipe cavity


12


. Dowtherm A, a synthetic heat transfer fluid, would be preferred for operation at higher temperatures, such as 260° C. (500° F.) or above, because it would produce an operating pressure of only about 1.054 kg/cm.


2


(15 psi). This allows the outer shell wall to be relatively thin.




Before charging the heat pipe cavity


12


with a new quantity of medium


29


, the roller


10


can be heated to a high temperature under vacuum to remove adsorbed gases. The roller


10


is then cooled. The medium in an external container must also be exposed to vacuum to draw off trapped gases before flowing medium


29


into the heat pipe cavity


12


. A special tool


35


, the head end of which is seen in

FIG. 1

has a Allenhead driver


22


on one end of a shaft


23


that extends through casing


24


. The tool


35


includes a fitting


39


with a threaded tube


40


that can be screwed into the hole


15


. An O-ring


41


is carried in a groove


42


in a collar portion


43


of the fitting


39


. The collar


39


forms a circular opening facing away from the port


25


, and this opening receives another tubular portion


44


of the casing


24


of the tool


35


. The casing


24


has inlets (not shown) for a source of vacuum (negative) pressure and for a source of heated liquid medium. Shut off valves are provided to control application of the vacuum and flow of the fluid into casing


24


. The head


22


on the end of the tool can be used to retract the screw


16


beyond the source of the vacuum so that the holes


14


,


15


are unblocked and flow is unrestricted. A source of heated medium is then used to flow medium


29


through the holes


14


,


15


into the heat pipe cavity


12


. The tool


22


,


23


is then used to advance the screw


16


behind the ball


20


, using the grease


21


as shown in

FIG. 1

, until the ball


20


contacts the rim


19


. The shaft


23


is rotated one quarter to three quarters of a turn and then withdrawn. A plug or second screw (not shown) can then be inserted in the open end of the hole


15


and brazed or otherwise fixed in place to seal the hole


15


and protect the screw


16


from being disturbed.




This method has the advantage over current methods in that the introduction of medium, the drawing of vacuum and the sealing of the port


25


can be performed with the roller


10


a horizontal position, and this can be done in the field as well as at the factory. With the methods and apparatus of the invention, the roller


10


can be recharged through the port


25


many times. When the heat pipe is to be recharged, the ball


20


can be pried out of the hole


14


using a small screwdriver.




This has been a description of examples of how the invention can be carried out. Those of ordinary skill in the art will recognize that various details may be modified in arriving at other detailed embodiments, and these embodiments will come within the scope of the invention.




Therefore, to apprise the public of the scope of the invention and the embodiments covered by the invention, the following claims are made.



Claims
  • 1. Apparatus for sealing a port in a heat pipe for a roller, the apparatus comprising:a wall portion of the heat pipe, said wall portion being made of metal and having an entry hole communicating with a cavity in the heat pipe for holding the medium, said entry hole having a rim with a uniform, substantially sharp edge; wherein the wall portion also has a threaded hole aligned with and communicating with the entry hole, said threaded hole having a substantially flat bottom; a metal plug for engaging the rim and closing the entry hole; and a screw for insertion into the threaded hole, said screw being in substantially rigid driving relationship with said plug and being rotatable for advance to urge the plug into engagement with the edge of the rim, the plug having a surface that deforms around the rim to form a gas-tight, single use, metal-to-metal seal, to seal the entry hole.
  • 2. The apparatus of claim 1, wherein the screw has at least one longitudinal vent communicating from one end of the screw to an opposite end.
  • 3. The apparatus of claim 1, wherein the screw has a socket for receiving a tool head for rotating the screw.
  • 4. The apparatus of claim 1, wherein the plug is a ball having a diameter approximately 1.5 times the diameter of the entry hole.
  • 5. The apparatus of claim 1, wherein the plug forms a seal line deformation in the plug surface that has a width from approximately 10 mils to approximately 60 mils.
  • 6. The apparatus of claim 1, wherein the plug is made of brass, copper or nickel.
  • 7. The apparatus of claim 1, wherein the plug is a ball.
  • 8. The apparatus of claim 7, further comprising a body of grease for holding the ball in a centered position and preventing rotation of the ball as it is urged into the entry hole by advance of the screw.9.The apparatus of claim 7, further comprising a ring for disposition in the depth of the threaded hole for centering the ball on the entry hole.
  • 10. The apparatus of claim 7, wherein the screw has a depression in one end for receiving and centering the ball along a screw axis aligned with a center of the entry hole.
  • 11. The apparatus of claim 7, wherein the ball is made of brass, copper or nickel.
  • 12. A method of sealing a port of a heat pipe for a roller, the method comprising:placing a plug against one end of a screw such that the plug is held centered along a longitudinal axis of the screw; placing the plug and screw in a threaded hole leading to an entry hole into a heat pipe cavity; advancing the screw until the plug bottoms in the threaded hole and enters the entry hole, while drawing a vacuum through the screw; and advancing the screw an additional amount to lodge the plug in the hole and to seal the hole and the heat pipe cavity from the outside environment.
  • 13. The method of claim 12, wherein the plug forms a seal line in the plug surface that has a width from approximately 10 mils to approximately 60 mils.
  • 14. The method of claim 12, wherein the additional amount the screw is advanced is from approximately ¼ turn to approximately ¾ turn.
  • 15. The method of claim 12, further comprising capping the threaded hole to prevent disturbance of the screw.
  • 16. The method of claim 12, wherein the plug is a metal ball.
  • 17. The method of claim 12, wherein the metal plug is removed and replaced with a new metal plug to reseal the port.
  • 18. The method of claim 12, wherein the force applied to the metal plug by the screw, which deforms the metal surface of the metal plug is at least 400 pounds.
  • 19. The method of claim 12, further comprising applying a lubricant, such as grease, between the metal plug and the screw to prevent rotation of the plug as the seal is being formed.
  • 20. The method of claim 12, wherein the seal is formed to withstand temperatures up to at least 500° F.
US Referenced Citations (10)
Number Name Date Kind
2074591 Rood Mar 1937
2154331 Hathcock Apr 1939
2941475 Blair Jun 1960
4807514 Gartzmuller Feb 1989
5145008 Yun Sep 1992
5292298 Scannell Mar 1994
5529313 Malks Jun 1996
5653479 Henderson Aug 1997
5821499 Crimmins et al. Oct 1998
5823091 Collingborn Oct 1998
Non-Patent Literature Citations (1)
Entry
U.S. application No. 08/783,597, Hyllberg et al., filed Jan. 13, 1997.