This invention relates generally to motorized dampers, and, more particularly, to motorized dampers for use in freezing temperature conditions.
At least one type of motorized damper includes a damper door rotatably mounted in a damper frame having an opening therethrough. An electric motor is coupled to the damper door and positions the damper door in desired positions relative to the damper frame opening. When located in, for example, an air flow path, air flow through the damper can be regulated by positioning the damper door to, for example, a fully closed position substantially preventing airflow through the damper frame opening, a fully open position where airflow through the damper frame opening is substantially unimpeded, and intermediate positions between the fully open and closed positions.
In certain applications, this type of damper is vulnerable to jamming in cold temperature conditions. For example, refrigerators typically employ one or more of these dampers to regulate airflow between a fresh food compartment and a freezer compartment. The damper is opened to introduce cold air from the freezer compartment into the fresh food compartment to regulate fresh food compartment temperature. The temperature differential between the fresh food compartments and humidity in one or both of the compartments can cause moisture to accumulate on the damper door. The moisture runs down the door and permeates a seal between the damper door and the damper frame, and eventually into the motor housing where it may collect on cam surfaces, gears, and other moving parts of the motor mechanism. Freezing temperatures therefore create ice on the motor mechanism that can jam the damper door, or at least impair its ability to be positioned properly. To meet stringent energy and performance requirements, it is important that the dampers be positioned reliably and accurately.
In an exemplary embodiment, a motorized damper door assembly for use in freezing temperature applications includes a damper frame, a damper door having a mounting portion rotatably mounted to the frame, and a seal member having a vertically extending moisture barrier adjacent the mounting portion. The door mounting portion and the moisture barrier together form a reservoir inside the door mounting portion to prevent moisture from seeping directly into the motor housing below the door mounting portion. Rather, moisture can enter the motor housing only after rising to the level exceeding the height of the moisture barrier.
With strategic selection of moisture barrier height, moisture entry into the motor housing is practically eliminated. Consequently, as moisture accumulation in the motor housing is avoided, associated damper jamming and impaired performance issues are also avoided. A reliable and cost effective motorized damper assembly is therefore provided that may be used in low temperature conditions and environments, such as in a refrigerator, to more capably meet applicable energy and performance objectives.
Damper door assembly 10 includes a door frame 12, a damper door 14 including a sealed mounting assembly 16, and a known motor 18 for adjusting a position of damper door 14. Door frame 12 includes a first side 20, a second side 22, a bottom 24 and a top 26. Frame first side 20 includes a damper opening 28 therethrough, and damper door 14 is rotatably mounted to frame bottom 24 and to frame top 26 and is dimensioned at least equally to the dimensions of damper opening 28 to regulate airflow therethrough. Damper door 14 is selectively positionable between a fully open position wherein airflow through damper opening 28 is substantially unimpeded by damper door 14, as shown in
Damper door 14 is substantially vertically mounted in damper door assembly 10, i.e., damper door 14 rotates about a substantially vertical axis. Thus, any moisture accumulating on damper door 14 is drawn by gravity to a lower end of damper door 14, and sealed mounting assembly 16 is located in the lower end of damper door 14 and frame bottom portion 24 to prevent moisture from entering motor 18. Thus, potential freezing of moisture on motor mechanism components (not shown) therein is avoided. For example, in one embodiment, damper door 14 is rotated by an eccentric pivot pin (not shown in
Seal member moisture barrier 40 extends upwardly into mounting portion chamber 34 within door mounting portion body 32. Mounting portion chamber 34 is therefore effectively separated into an outer chamber 46 extending between moisture barrier 40 and door mounting portion body 32, and an inner chamber 48 extending between seal member moisture barrier 40 and door pivot pin 42. Outer chamber 46 forms a reservoir to prevent moisture from entering inner chamber 48 and reaching components of motor 18 (shown in
In an exemplary embodiment, seal member 36 extends from damper frame bottom portion 24, and is attached to frame bottom portion 24 in a known manner to adequately seal the connection between seal member 36 and frame bottom portion 24. In an alternative embodiment seal member 36 is integral to frame bottom portion 24. Seal member 36 is fabricated from known materials and techniques so that seal member 36 is capable of withstanding expected temperature conditions in use, and in different embodiments is fabricated from the same or different materials as other components of motorized door assembly 10.
Further, moisture barrier 40 and door mounting portion body 32, in an exemplary embodiment, extend substantially parallel to one another. In a further embodiment moisture barrier 40 and door mounting portion 32 extend substantially vertically. It is contemplated, however, that an adequate reservoir can be created in outer chamber 46 if one or both of moisture barrier 40 and door mounting portion body 32 are inclined, whether parallel or in a nonparallel fashion.
In addition, in an exemplary embodiment, door mounting portion body 32 is substantially cylindrical, thereby forming a cylindrical mounting portion chamber 34 therein, and moisture barrier 40 is complementary in shape to mounting portion chamber 34. In alternative embodiments, however, other shapes of door mounting body 32, mounting body chamber 34, and moisture barrier 40 may be employed to achieve the benefits of the instant invention, including non-complementary shapes of door mounting body 32, mounting body chamber 34, and moisture barrier 40.
While the invention has been described in terms of various specific embodiments, those skilled in the art will recognize that the invention can be practiced with modification within the spirit and scope of the claims.
Number | Name | Date | Kind |
---|---|---|---|
3123098 | Bishop | Mar 1964 | A |
3799187 | Armstrong | Mar 1974 | A |
4836499 | Steele et al. | Jun 1989 | A |
5501716 | Chiba et al. | Mar 1996 | A |
5641016 | Isaji et al. | Jun 1997 | A |
5706551 | Jeynes et al. | Jan 1998 | A |
5799591 | Anderson | Sep 1998 | A |
6006531 | Pritts et al. | Dec 1999 | A |
6092375 | Denniston | Jul 2000 | A |
6240735 | Kolson et al. | Jun 2001 | B1 |
6289787 | Underwood et al. | Sep 2001 | B1 |
Number | Date | Country | |
---|---|---|---|
20030036348 A1 | Feb 2003 | US |