The invention more particularly relates to a device making it possible to transmit the rotational movement to a pump shaft.
In the prior art, sealed devices for transmitting a rotational movement inside a chamber are known. Such devices are more particularly disclosed in the French application for a patent FR 2 746 452 in the name of the applicant.
The device described in the present document includes a drive shaft including an input section extending through a wall of the flow space of a pump and cooperating with a rotational driving means, and a section inclined in relation to the input section, the end of which is engaged with a driven shaft so as to transmit the rotational movement. In order to provide the sealing between the inside and the outside of the flow space, the portion of the drive shaft positioned in the flow space is surrounded with a non rotating sealed sleeve including two metallic bellows. The bellows are mounted to slide on the inclined section so as to provide a sufficient service life.
However, this type of device has disadvantages. As a matter of fact, the maximum excentration of the end of the section inclined in relation to the output section is limited since the exceeding of such maximum excentration leads to the buckling of the bellows. As a matter of fact, in order to limit the constraints generated in the bellows plies resulting from the deformation of the plies, the inclination angle a between the input section and the output section must be limited. Thus, in order to increase the excentration, the length of the inclined section and thus of the bellows must be increased. Now, the increase of the length of the bellows through the addition of several plies reduces the rigidity of the bellows and even makes it unstable in its movements. This instability can be called the buckling of the bellows. Thus, because of this impossibility to increase the excentration under the threat of causing the buckling of the bellows, the effort required for driving into rotation the driven shaft is relatively high.
The invention aims at remedying these problems by providing a device for transmitting a rotational movement which is sealed, resistant and enables to reduce the effort required for actuating the driven shaft by increasing the lever arm thereof. For this purpose and according to a first aspect, the invention provides a sealed device for transmitting the rotational movement including:
a chamber inside which the movement is transmitted
a driven shaft;
a drive shaft including at least an input section extending through a wall of said chamber and intended to cooperate with a rotational drive means and an output section engaged with the driven shaft and inclined by an angle a in relation to said input section; the device including a non rotating sealed casing surrounding the drive shaft inside said chamber.
The sealed casing includes at least:
a bellows portion conferring flexibility on the casing at the intersection between the axis of the input section and the axis of the output section of the drive shaft, and
a rigid sleeve extending alongside the bellows portion in the direction of the end of the output section of the drive shaft.
Thus, according to the invention, the sealed casing is stable since the portion of the bellows uses a restrictive number of juxtaposed annular elements. In addition, the excentration of the end of the inclined portion can be increased proportionally to the length of the rigid sleeve since this portion of the casing does not affect the rigidity of the casing. Thus, the effort required for the rotation of the driven shaft is reduced through the increase of the lever arm.
Advantageously, the bellows portion extends by an equal distance on either side of said intersection so as to draw an arc of circle. Thus, the constraints are equally distributed on each ply. Preferably, in order to obtain an important excentration, the length of the rigid sleeve is greater than half the length of the bellows portion.
In addition, in the devices of the prior art, the bellows casing undergo deformations resulting from the difference in pressure between the inside of the casing and the chamber. As a matter of fact, a bellows, the axis of which draws an arc of circle will change shape when pressurised. Under such circumstances, the shape taken by the bellows depends on the direction of the pressure discrepancy. If the pressure inside the bellows is greater than that inside the chamber then said bellows will bend. On the contrary, if the pressure in the bellows is smaller than the pressure in the chamber, then the bellows will be bent upwards. The consequence of such deformations is an increase in the constraints in some plies of the bellows which result in a reduction in the service life of said bellows.
Advantageously, to solve the above-mentioned problem, the sealed casing is filled with a liquid in order to balance the pressure between the inside of the chamber and the inside of the casing. The filling of the internal volume of the flexible and sealed cavity with a liquid is an efficient solution to solve the above-mentioned problem. In a preferred embodiment, the liquid is a degassed lubricant. The degassed lubricant is advantageous in that it can, on the one hand and at our level, be considered as non compressible and on the other hand and at our level, be considered as insensitive to vacuum within the limit of the vapour pressure thereof.
Advantageously, the sealed casing is on the one hand fixed to the chamber and on the other hand mounted on the drive shaft through a sliding bearing. The sealed casing thus has a degree of axial freedom at one of its ends. Then, the casing is adapted for undergoing expansions or contractions of the liquid as a function of the evolution of temperature inside the chamber.
Advantageously, the drive shaft is mounted to rotate through a bearing mounted on a support extending inside said chamber. Thus, the bearing of the drive shaft is close to the point of transmission of the torque, which makes it possible to reduce the efforts applied on said bearing. Advantageously, the output section of the drive shaft is fixed to the input section through a supporting flange. Thus, the length of the input section is increased and the supporting bearing of the drive shaft can be positioned closer to the point of transmission of the torque.
In one embodiment, the device includes a connection part positioned at the end of the drive shaft, the driven shaft being provided with a cradle for receiving said connection part. Advantageously, the sealed casing is made of a stainless metallic material or a composite material. Thus, the material of the casing is chemically compatible with all kinds of liquid pumped and resists a utilisation at high temperatures.
According to a second aspect, the invention relates to a method for manufacturing a sealed transmission device according to the first aspect of the invention including a step of filling the sealed casing with a liquid in order to balance the pressure between the chamber and the inside of the casing. Preferably, said method further includes a step prior to the filling step consisting in putting said sealed casing under a vacuum.
Other objects and advantages of the invention will appear while reading the following description and referring to the appended drawings, wherein:
The drive shaft 1 includes an input section 3 and an output section 4, which is inclined by an angle a in relation to the input section 3. The input section 3 goes through a fixed wall 14 of the chamber 7 and cooperates with a rotation drive means positioned outside the chamber, such as a motor, not shown. The input section 3 is coaxial with the driven shaft 2. The driven shaft 2 includes a U-shaped cradle 5 making it possible to receive the off-centred end of the drive shaft 1. The eccentricity at the end of the drive shaft 1 resulting from the inclination of the output section 4 is indicated E. The effort required for the transmission of the torque to the driven shaft 2 is reversely proportional to the excentration E.
The rotation direction of the movement can be clockwise or anticlockwise. In addition, the direction of the transmission of the movement may be reverse with a drive shaft 1 becoming the driven shaft 2 and vice versa. In order to provide the sealing between the inside and the outside of the chamber 7, the part of the drive shaft 1 positioned inside the chamber 7 is surrounded by a non rotating sealed casing 8 about the axis thereof including two portions: one bellows portion 9 and one sleeve 10 extending along said bellows portion 9 towards the output section 4. The casing 8 is mounted, on the one hand, fixed in relation to the chamber 7 and on the other hand it is mounted to rotate on the output section 4 of the drive shaft 1 through a sliding bearing 11. The sliding bearing 11 may be more particularly a smooth or a ball bearing.
The bellows portion 9 makes it possible to provide flexibility to the casing 8, in the vicinity of the intersection I between the axis dl and the input section 3 and the axis d2 of the output section. In the embodiment shown, the bellows is made of a series of annular elements 6. In order to limit the constraints in such annular elements 6, the bellows 9 rotates on an arc of circle. For this purpose, the bellows 9 extends by an equal length a and a′ on either side of the intersection 1.
The sleeve 10 is rigid and makes it possible to extend the casing 8 without increasing the instability thereof. Advantageously, in order to obtain a sufficient eccentricity E, the increase in excentration brought by the portion of the output section 4 surrounded by the sleeve 10 having a length m is at least equal to the excentration e resulting from the portion of the output section 4 surrounded by the bellows 9. Thus, the length of the sleeve 10 is greater than 50% of the length of the bellows portion 9 and preferably greater than the length of the bellows portion 9.
The construction of the sealed casing 8 must provide it with a sufficient torsional rigidity to support the torsional torque which it is submitted to in operation. In one embodiment, the sealed casing 8 is made of stainless steel. Now, the construction thereof in any other material having physical and chemical characteristics suitable for such an application and more particularly ceramics can be considered.
In order to balance the pressure between the inside of the chamber 7 and the inside of the casing 8, the sealed casing 8 is filled with a liquid, preferably a lubricant. For this purpose, when the drive shaft 1 and the casing 8 are positioned inside the chamber 7, the method for manufacturing the device provides a vacuum inside the casing 8 via one or several holes, not shown. When the vacuum is provided inside the casing 8, the mounting method provides the filling of the envelope 8, via the hole or holes, with the lubricant.
The above-mentioned
The drive shaft 1 is mounted on the chamber through two bearings 12, 16 (refer to
The drive shaft 1 is provided at the end thereof with a connection part 24 shown in detail in
The function of the cradle 5 is to transmit a movement which can be compared to the operation of a crank and is fixed to one end of the driven shaft 2. In the embodiment shown, the connection part or tip 24 and the cradle 5 have resting walls 28a, 29a, 28b, 29b which are substantially planar. However, the resting areas between the walls 28a and 28b of the connection part 24 and the walls 29a, 29b of the cradle 5 are limited to a part of the opposite areas so as to provide a play which authorises deformations in the construction or in operation without causing a locking of the movement transmission.
In the embodiment shown, said driven shaft 2 is supported by two bearings 13, 30 extending on either side of the flow space 31 of the pump (refer to
Number | Date | Country | Kind |
---|---|---|---|
0753340 | Feb 2007 | FR | national |
This application is a National Phase Entry of International Application No. PCT/FR2008/000182, filed on Feb. 13, 2008 which claims priority to French Patent Application No. 0753340, filed on Feb. 19, 2007, both of which are incorporated by reference herein.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/FR08/00182 | 2/18/2008 | WO | 00 | 11/11/2009 |