The invention relates generally to electrical component enclosures that are adapted to contain arc-producing components.
Metal, box-like enclosures are commonly used to contain certain arc-prone electrical components, such as medium-voltage controllers. Such controllers may operate at voltages from about 5 kV to 38 kV. These enclosures are typically designed to withstand increased gas pressures that may be generated during, for example, an arcing event that acts in an interior of the enclosure. Such controller enclosures typically include one or more doors allowing access to an interior of the enclosure thereby providing ease in servicing and maintaining the motor controllers therein. Such enclosure doors are generally designed to limit arcing products and hot gases from escaping the enclosure. To accomplish this, a typical enclosure door may overlap a face frame of an opening of the enclosure when closed. One or more hinges may be provided along a hinged edge of the door. One or more latches that engage the face frame may be provided along edges of the other sides of the door. However, existing doors may be inefficient at containing arcs and arc debris.
Accordingly, improved mechanisms for withstanding arc-induced gas pressures in order to limit arcing products and hot gases from escaping the enclosure (e.g., controller enclosures) are desired.
According to a first aspect, a sealed enclosure is provided. The sealed enclosure includes a case configured to receive an arc-prone electrical component; a face frame defining an opening; a door configured to cover the opening; a sealing surface on the face frame or on the door; and one or more flaps having an sealing portion, the sealing portion being angled relative to the sealing surface, the one or more flaps being operational to flex from a disengaged position when not under pressure, to an engaged position in contact with the sealing surface when exposed to pressure inside the case during an arcing event.
According to another aspect, a sealed enclosure is provided. The sealed enclosure includes a case configured to receive an arc-prone electrical component; a face frame on the case defining an opening, the face frame having a plurality of sealing surfaces; a door configured to cover the opening; and a plurality of flaps coupled to the door, one flap adjacent each edge of the door, the plurality of flaps each having an sealing portion being positioned relative to one of the sealing surfaces, the one or more flaps being operational to flex from a disengaged position when not under pressure, to an engaged position in contact with the sealing surfaces when exposed to pressure inside the case during an arcing event.
According to a further aspect, a sealed enclosure door is provided. The sealed enclosure door includes a door configured to cover an opening of a case; and a plurality of flaps coupled to the door, one flap adjacent each edge of the door, the plurality of flaps each having an sealing portion, the one or more flaps being operational to flex from a disengaged position when not under pressure, to an engaged position in contact with sealing surfaces of an enclosure when exposed to pressure inside the case during an arcing event.
According to still another aspect, a method of sealing an enclosure during an arcing event is provided. The method includes providing a face frame on a case of the enclosure; providing a door on the case; providing a sealing surface on the door or the face frame; and sealing between the door and the face frame during the arcing event by flexing a flap into contact with the sealing surface responsive to pressure buildup in the enclosure due to the arcing event.
Still other aspects, features, and advantages of the invention may be readily apparent from the following detailed description wherein a number of exemplary embodiments and implementations are described and illustrated, including the best mode contemplated for carrying out the invention. The invention may also be capable of other and different embodiments, and its several details may be modified in various respects, all without departing from the scope of the invention. Accordingly, the drawings and descriptions are to be regarded as illustrative in nature, and not as restrictive. The drawings are not necessarily drawn to scale. The invention covers all modifications, equivalents, and alternatives falling within the scope of the invention.
Reference will now be made in detail to the example embodiments of this disclosure, which are illustrated in the accompanying drawings. Wherever possible, the same reference numbers will be used throughout the drawings to refer to the same or like parts.
The aforementioned problem of improving the sealing of an enclosure for arc-prone components having a case and a door for closing the enclosure is addressed by one or more embodiments of the invention described herein. Accordingly, by providing improved sealing of the enclosure containing the electrical components that are subject to arcing, embodiments of the present invention help to protect operators from potentially un-safe working conditions and limit the egress of arc debris and gases from the enclosure.
In one or more embodiments, a sealed enclosure is provided having a case configured to receive an arc-prone electrical component, a face frame defining an opening into the case, and a door configured to cover the opening. The face frame or the door has a sealing surface that is contacted by one or more flaps arranged around the opening. The one or more flaps have a sealing portion oriented to be angled relative to the sealing surface, the one or more flaps being operational to flex from a disengaged position when not under pressure, to an engaged position in contact with the sealing surface when exposed to arc pressure (pressure buildup in the case due to electrical arcing of the electrical component contained in an interior of the enclosure) inside the case during an arcing event.
In other aspects, sealed doors are provided, as are methods of sealing an enclosure door during an arcing event, as will be explained in greater detail below in connection with
Such electrical components may include electrical controllers, such as motor controllers, switchgear, or the like, for example. Such electrical controllers may operate at voltages of from about 5 KV to 38 KV. Other voltage operation levels may be provided. When arcing occurs due to insulation deterioration, vermin damage, or other causes severe electrical arcing may occur. During such arcing events when substantial, violent electrical arcs may be produced within the enclosure 100, pressures within the enclosure 100 may spike very rapidly to relatively high pressures (e.g., 5-40 psi or more). These pressures distort the door and conventional sealing system thereof.
In one or more embodiments, the enclosure 100 includes a case 102 configured to receive an arc-prone electrical component. The case 102 has walls 104, 106, 108, a face frame 110, and a door 112 interfacing with the face frame 110. The enclosure 100 includes a floor 114 and ceiling 116. The floor 114 and ceiling 116 may be assembled to the walls 104, 106 and 108 and face frame 110 as a unit, or in some embodiments, or the floor 114 and ceiling 116 may be provided on components that are then assembled to the case 102. In any event, an enclosed interior space is provided that is adapted to house one or more arc-prone electrical components. According to embodiments, the case 102 has an opening 118 (shown dotted in
The door 112 may include a door panel 112P and a handle 122 at an outer surface of the door 112. The handle 122 may operate a mechanism (e.g., a closing and/or locking mechanism) at an inner surface of the door 112 for closing the door 112. In some embodiments, a door locking mechanism may be part of a switch interlock system. A door ledge (see door ledge 212L in
As depicted in
In more detail, the sealed enclosure 100 includes a sealing surface 224, which may be provided on the face frame 110. In particular, in this embodiment, the sealing surface 224 is provided on the outwardly projecting portion 226 and comprises one or more planar surfaces. In the embodiment described herein, a planar sealing surface 224 is provided on each of the left, right, top, and bottom portions of the opening 118. The sealed enclosure 100 includes one or more flaps 228 having a sealing portion 230 configured and adapted to seal against the sealing surface 224. In the depicted embodiment, a flap 228L, 228R, 228T, 228B (See
As shown in
As shown in
Again referring to
In
In another embodiment, as best shown in
The inventor has recognized that the increased gas pressure generated during an arcing event on the interior 227 of the enclosure 100 may act to outwardly distort the door in prior door designs, thus providing gaps through which arc debris may escape. This is solved by the present invention by effectively sealing the flaps 228 against the sealing surface 224 of the face frame 110. The flaps 228 move from a disengaged position when not under pressure to an engaged position during an arcing event. This motion of the flaps 228 advantageously results in a tighter sealing between the door 112 and the face frame 110, and in some embodiments operates as a second seal in addition to the seal provided by the interaction of the receiver surface 223 and the door ledge 212L.
In an alternative embodiment of sealed enclosure 400, as shown in
It should be understood that the above process blocks of method 500 may be executed or performed in an order or sequence not limited to the order and sequence shown and described. Also, some of the above blocks may be executed or performed substantially simultaneously or in parallel where appropriate or desired. For example, in some embodiments, blocks 502, 504 and 506 may be performed in another order or in parallel or substantially simultaneously.
Persons skilled in the art should readily appreciate that the invention described herein is susceptible of broad utility and application. Many embodiments and adaptations of the invention other than those described herein, as well as many variations, modifications, and equivalent arrangements, will be apparent from, or reasonably suggested by, the invention and the foregoing description thereof, without departing from the substance or scope of the invention. For example, although described in connection with motor controller enclosures, the invention may be applicable to other suitable types of electrical enclosures adapted to contain one or more arc-prone electrical components. Accordingly, while the invention has been described herein in detail in relation to specific embodiments, it is to be understood that this disclosure is only illustrative and presents examples of the invention and is made merely for purposes of providing a full and enabling disclosure of the invention. This disclosure is not intended to limit the invention to the particular devices, systems or methods disclosed, but, to the contrary, the intention is to cover all modifications, equivalents, and alternatives falling within the scope of the invention.
This application claims priority to U.S. Provisional Patent Application Ser. No. 61/655,858 filed on Jun. 5, 2012, entitled “SIMOVAC Enclosure Door Seal,” the disclosure of which is hereby incorporated by reference in its entirety herein.
Number | Name | Date | Kind |
---|---|---|---|
3912348 | Seymour | Oct 1975 | A |
4864466 | Gasparetto | Sep 1989 | A |
5574624 | Rennie et al. | Nov 1996 | A |
5689097 | Aufermann et al. | Nov 1997 | A |
6357804 | Bernier et al. | Mar 2002 | B1 |
6989996 | Wells | Jan 2006 | B2 |
7095606 | Mahn | Aug 2006 | B2 |
7654404 | Kadziolka et al. | Feb 2010 | B2 |
7871137 | Schulz | Jan 2011 | B2 |
7974078 | Coomer | Jul 2011 | B2 |
8842421 | Gingrich | Sep 2014 | B2 |
20030117045 | Byron et al. | Jun 2003 | A1 |
20030151337 | Leccia et al. | Aug 2003 | A1 |
20050198907 | McKnight et al. | Sep 2005 | A1 |
20080093932 | Whitt et al. | Apr 2008 | A1 |
20090173118 | Schulz et al. | Jul 2009 | A1 |
20100218429 | Shanahan et al. | Sep 2010 | A1 |
20120013227 | Josten et al. | Jan 2012 | A1 |
20120028559 | Kingston | Feb 2012 | A1 |
20120194044 | Niedzwiecki | Aug 2012 | A1 |
20130087359 | Leslie et al. | Apr 2013 | A1 |
20130143478 | Arcos et al. | Jun 2013 | A1 |
Number | Date | Country | |
---|---|---|---|
20130320831 A1 | Dec 2013 | US |
Number | Date | Country | |
---|---|---|---|
61655858 | Jun 2012 | US |