The present invention relates to drives for rotating a sucker rod commonly used in oil and gas operations, which conventionally use a stuffing box to seal fluid in the well. More particularly, this invention relates to a sealed drive for a rotating rod string which drives a downhole progressive cavity pump.
Reciprocating downhole pumps have been used in the oil and gas industry for years to raise oil to the surface. In order to direct the oil flow at the surface of the well, a stuffing box is employed to seal around the reciprocating rod string. Stuffing boxes are commonly used for sealing with a reciprocating rod string.
Progressive cavity pumps rely upon the rotary action of the rod string rather than reciprocating action to power the downhole pump. Stuffing boxes for rotating rod strings commonly use conventional packing material as the sealing element, although some designs employ Chevron-type sealing elements.
The failure of a stuffing box is environmentally damaging and costly. Most often, failure results in spillage of oil at the well site, and well sites are thus commonly subject to expensive cleanup operations to eliminate hydrocarbons around the area of a well. Stuffing boxes also require a fairly high maintenance, and operators frequently are scheduled to check operating stuffing boxes to ensure that there are no leaks, to eliminate or minimize any leakage that is occurring, and to replace stuffing boxes when necessary. Leakage of a stuffing box thus represents a significant cost of recovering oil from wells which are driven by a downhole pump and a powered sucker rod.
U.S. Pat. No. 4,372,379 discloses a drive assembly for powering a downhole rotary pump. The drive motor is not directly over the wellhead, and
U.S. Pat. No. 5,343,944 discloses a self aligning stuffing box for a pump-jack unit. U.S. Pat. No. 5,567,138 discloses a technique for limiting eccentric deviations of a rotating rod string in a pumping application. U.S. Pat. No. 5,791,411 discloses a wellhead stuffing box for a rotating rod string. U.S. Pat. No. 5,865,245 discloses a stuffing box gland for use with a rod string. U.S. Pat. No. 6,637,509 discloses a wellhead stuffing box support assembly positioned between a production pumping tree and a stuffing box of a wellhead.
U.S. Pat. No. 6,843,313 discloses a pump drive head with a stuffing box, and U.S. Pat. No. 7,044,217 discloses a stuffing box for a PC pump drive. U.S. Pat. No. 7,055,593 discloses a stuffing box with packing cones for a seal.
The disadvantages of the prior art are overcome by the present invention, and an improved sealed drive for powering a rotating sucker rod string which drives a downhole progressive cavity pump is hereinafter disclosed.
In one embodiment, a drive assembly for powering a rotating rod string in a well having a surface wellhead includes a motor having a drive shaft, and a torque conveying housing below the motor and containing a radially outer member supporting a plurality of outer member magnets. A non-magnetic pressure bearing housing includes an upper plate, a radially intermediate member extending downward from the upper plate, and a lower end seal to the wellhead. A radially inner member supporting a plurality of inner member magnets is rotatable within the intermediate member. Magnetic forces between the plurality of outer member magnets and the plurality of inner member magnets rotate the inner member magnets and thus the radially inner member when the motor rotates the outer member. A drive shaft connects the radially inner member and the sucker rod for rotating the sucker rod.
In another embodiment, the drive assembly for powering a rotating rod string in a well having a surface wellhead includes a torque conveying housing below the motor and containing a radially outer member supporting a plurality of outer member magnets. The radially inner member supporting a plurality of inner member magnets allows magnetic forces between the magnets to rotate the inner member magnets and thus the inner member as the outer member rotates. The radially inner member is rotationally connected to the sucker rod for rotating a sucker rod. A motor within the torque conveying housing rotates the radially outer member, and a pressure bearing housing above the torque conveying housing seals fluid pressure within the wellhead.
It is a feature of the invention to provide a drive for powering a progressive cavity pump which utilizes static rather than dynamic seals for sealing pressure within the wellhead. A related feature of the invention provide an improved drive for powering a rotating rod string to drive a progressive cavity pump wherein the maintenance required to seal fluid at the wellhead is significantly reduced.
These and further features and advantages of the present invention will become apparent from the following detailed description, wherein reference is made to the figures in the accompanying drawings.
Motor 12 is thus concentrically positioned over the wellhead, and drives an outer housing 24 which has an upper shaft end 26, an upper top plate section 28, and a sleeve-shaped lower section 30 positioned within the torque conveying housing 32. The outer housing 24 supports a plurality of circumferentially arranged outer magnets 34, which are radially outward from the sleeve portion 36 of the pressure bearing housing 16. The pressure bearing housing 16 includes an upper plate section 38, a sleeve-shaped portion 36 extending downward from the upper plate 38, and a lower section 40 secured to torque conveying housing 32. In this case, the lower section 40 is a flange section, which is sandwiched between a lower surface of the lower flange on the torque conveying housing 32 and the upper surface of support housing 42, which in turn rests on top of the upper surface of the wellhead 18. The lower section of the pressure bearing housing 16 is thus sealed to the torque conveying housing and the support housing 42 to prevent fluid from leaking out of the wellhead.
A coupling drive shaft 44 extends upward from the sucker rod 14, and includes a spline connection 46 for axial movement of the coupling drive shaft with respect to the upper end of the sucker rod. Mechanisms other than splines may be used for this adjustment purpose. A rotor sleeve 48 as shown in
As shown in
Incorporating a magnetic coupling into a PC drive mechanism is certainly feasible with commercially available couplings. Should greater torques be required, one may increase the axial length of the drive assembly, thereby adding more magnets, or increasing the diameter of the drive unit by using larger magnets.
The present invention essentially eliminates a conventional stuffing box and associated problems. Rather than use a conventional motor/frame that creates a large eccentrically located device on top of the wellhead, the proposed drive assembly offers a lighter motor and drive with its weight centralized above the wellhead. The centralization of the motor/drive over the wellhead will offer much greater safety in handling during installation and maintenance.
The drive of the present invention may be much lighter than prior art designs. By providing a hydraulic motor, high voltage and high electrical current can be removed from the critical explosion area near the wellhead. No electrical signal or current would have to be transmitted into the pressurized zone of the wellhead. Standard off-the-shelf motors may be adapted to the design, and the pressure is contained with static seals.
In the
The sucker rod 14 thus extends through the motor 64, thereby allowing a region above the motor for placement of the sucker rod height adjustment device 70. The pressure bearing housing 62 offers a sealing boundary for any pressure inside the wellhead 18.
For this embodiment, torque is transmitted from the motor to the sucker rod via a magnetic coupling. The motor is specifically designed with a hollow region along its central axis for accepting the sucker rod, and drives the outer portion of a concentric magnetic coupling. The radially inner portion of the magnetic coupling is mechanically fixed to the sucker rod. In this case, there is no pressure boundary between the coupled sets of magnets, thereby maximizing the efficiency of the magnetic coupling. All seals for this configuration may be static seals.
This embodiment also eliminates a conventional stuffing box and its associated problems. The design may be easily centralized with the drive unit and the motor concentrically positioned over the wellhead. Variations of the sucker rod length may be handled by conventional sucker rods adjustment height mechanism.
Although specific embodiments of the invention have been described herein in some detail, this has been done solely for the purposes of explaining the various aspects of the invention, and is not intended to limit the scope of the invention as defined in the claims which follow. Those skilled in the art will understand that the embodiment shown and described is exemplary, and various other substitutions, alterations and modifications, including but not limited to those design alternatives specifically discussed herein, may be made in the practice of the invention without departing from its scope.
Number | Name | Date | Kind |
---|---|---|---|
4372379 | Kulhanek et al. | Feb 1983 | A |
4647050 | Johnson | Mar 1987 | A |
5090944 | Kyo et al. | Feb 1992 | A |
5217068 | Newton | Jun 1993 | A |
5327961 | Mills | Jul 1994 | A |
5343944 | Bassinger | Sep 1994 | A |
5567138 | Newton | Oct 1996 | A |
5791411 | Ricalton et al. | Aug 1998 | A |
5865245 | Trout et al. | Feb 1999 | A |
6371487 | Cimbura, Sr. | Apr 2002 | B1 |
6637509 | Farquharson et al. | Oct 2003 | B2 |
6843313 | Hult | Jan 2005 | B2 |
7001063 | Markle | Feb 2006 | B1 |
7044217 | Hult | May 2006 | B2 |
7055593 | Lappin | Jun 2006 | B2 |
20050000689 | Peleanu et al. | Jan 2005 | A1 |
Number | Date | Country | |
---|---|---|---|
20090260800 A1 | Oct 2009 | US |