The present technology relates generally to electrical connectors and, more specifically, to connector assembly with electrical connections sealed from process fluids.
Generally, electrical connectors are developed to allow attachment and detachment of one or more cables connected on either side of connector pins to complete an electrical circuit. For certain applications in which electrical connections need to be reliably made from regions within a device exposed to “vastly” dissimilar thermal, compressive and/or chemical environments, such connections are challenging to achieve. One particular example is from inside to outside of a pressure vessel. Such electrical connectors have particular utility in pressure vessels where temperatures can exceed 500 degrees Fahrenheit and pressures can exceed 30,000 pounds per square inch. In such settings, various electronic components are housed within the pressure vessels and such electronics generally are designed to operate at atmospheric pressure, thereby requiring effective isolation between the high pressures of the ambient environment within the pressure vessel and the pressure within electronics modules. There is also a requirement of the use of high pressures and temperatures inside the pressure vessel, and passing electrical signals from the outside ambient conditions to electrical equipment inside the vessel. The electrical connector must provide a conductive path isolated from the thermal, compressive and/or chemical environments and effectively seal the thermal, compressive and/or chemical environments from each other. The environment inside or outside of the pressure vessel may contain elements that must not be exposed to the connector pins. Also the junction between the one or more cables and the connector pins must be protected from environmental contamination. For example, the environment inside the pressure vessel may contain corrosive elements such as hydrogen sulphide or chlorides or other electrically conductive elements such as water vapor that may reach the portion of the connector where the one or more cables are attached. This may result in a short circuit fault or loss of continuity due to corrosion of the parts within the electrical connector.
There is therefore a desire for a system and method for an enhanced technique for increased life of electrical connectors so as to prevent short circuit fault or corrosion of the parts within the electrical connectors.
In accordance with an example of the technology, a connector assembly is provided that includes a connector body disposed partially or completely in a pressure vessel configured for providing electrical conductive paths into and out from the pressure vessel. The connector assembly also includes multiple of elongated conductive pins disposed within the connector body. Each of the multiple elongated conductive pins includes a high pressure end and a low pressure end. The connector assembly also includes a polymeric resin disposed within the connector body to form a molded body surrounding the high pressure ends of the multiple elongated conductive pins for providing liquid-tight and gas-tight sealing between the polymeric resin and the plurality of elongated conductive pins and between the polymeric resin and the connector body. The molded body includes multiple fillets around all edges of the polymeric resin.
In accordance with an example of the technology, a method of manufacturing a connector assembly includes disposing multiple elongated conductive pins within a connector body. The method also includes supporting the multiple elongated conductive pins within the connector body by a transverse support member having multiple passages that are insulated using glass bead seals located towards the center of the transverse support member around the multiple passages. The method further includes injecting a polymeric resin into the connector body at a high pressure side forming a molded body that surrounds the multiple elongated conductive pins for providing sealing between the polymeric resin and the multiple elongated conductive pins and between the polymeric resin and the connector body and forming multiple fillets around all edges of the polymeric resin at the high pressure side.
In accordance with an example of the technology, a sealed connector assembly includes a connector body disposed partially or completely in a pressure vessel configured for providing electrical conductive paths into and out from the pressure vessel. The connector assembly also includes multiple of elongated conductive pins disposed within the connector body. Each of the multiple elongated conductive pins includes a high pressure end and a low pressure end. The connector assembly also includes a polymeric resin disposed within the connector body to form a molded body surrounding the high pressure ends of the multiple elongated conductive pins for providing liquid-tight and gas-tight sealing between the polymeric resin and the plurality of elongated conductive pins and between the polymeric resin and the connector body. The molded body includes multiple fillets around all edges of the polymeric resin. The connector assembly further includes a polymeric covering over a junction that connects each of the multiple elongated conductor pins and each of multiple electrical cables at high pressure side of the pressure vessel, a portion of each of the multiple electrical cables with protective sheaths and a portion of each of the multiple elongated conductor pins coated with polymeric resin.
These and other features, aspects, and advantages of the present technology will become better understood when the following detailed description is read with reference to the accompanying drawings in which like characters represent like parts throughout the drawings, wherein:
When introducing elements of various embodiments of the present technology, the articles “a,” “an,” “the,” and “said” are intended to mean that there are one or more of the elements. The terms “comprising,” “including,” and “having” are intended to be inclusive and mean that there may be additional elements other than the listed elements. Any examples of operating parameters are not exclusive of other parameters of the disclosed examples.
The connector assembly 10 includes a connector body 12 disposed partially or completely in a pressure vessel (not shown). In this example, the connector body 12 includes a cylindrical coupler tube made up of a metal. The connector body 12 houses multiple elongated conductive pins 14. Non-limiting examples of these multiple elongated conductive pins 14 may include copper or aluminum pins. In one example, the plurality of elongated conductor pins comprises copper or aluminum pins. The connector assembly 10 further includes a transverse support member 20 for supporting the multiple elongated conductor pins 14 within the connector body 12. As shown, the transverse support member 20 includes multiple passages 2.2 through which the multiple elongated conductive pins 14 separately pass. The transverse support member 20 also includes glass bead seals 24 around the multiple passages 22. Each of the multiple elongated conductive pins 14 includes a high pressure end 16 and a low pressure end 18. Further, the connector assembly 10 includes a polymeric resin 26 disposed within the connector body 12 to form a molded body surrounding the high pressure ends 16 of the multiple elongated conductive pins 14 for providing liquid-tight and gas-tight sealing between the polymeric resin 26 and the elongated conductive pins 14 and between the polymeric resin 26 and the connector body 12. Non-limiting examples of polymeric resins include thermoplastic, thermoset or elastomeric resin or blends thereof. Of particular interest are thermosets resins. These resins are easily processed in their uncured state, when the resin comprises unreacted monomers and/or oligomers, yet provides a thermal and mechanically stable polymeric matrix when the thermoset monomers and/or oligomers are cross-linked during cure. Typical monomers used in the formation of thermoset polymers include those compounds comprising at least one, and ideally two or more of the following functional groups: epoxy, oxetane, vinyl, acetylene, nitrile, isocyanate, amine, hydroxyl, thiol, anhydride, alkoxy, hydride, benzoxazole. Such compounds may be blended with each other and/or with catalysts or curing agents so as to facilitate crosslinking. They may be blended to produce hybrid thermoset materials or interpenetrating networks containing various types of crosslinking units. Typical examples of thermosets include epoxy, oxetane, polyester, vinyl ester, acrylate, methacrylate, maleimide, polyimide, dicyclopentadiene, acetylenic, cyanate ester, phthalocyanine, urethane, silicone, bisbenzoxazine perluorovinyl ethers resins. These thermosetting resins comprise monomers, oligomers, initiators, curatives, colorants, stabilizers, fillers (either organic or inorganic) and the like to provide an ideal balance of processability thermal, mechanical and chemical stability. The details of such thermosets may be found in a number of thermosetting materials including the epoxy casting resins produced under the trade names Durapot 861 or Stycast 2650. Also the molded body includes multiple fillets 27 around all edges of the polymeric resin 26. These multiple fillets 27 includes rounding geometry at exterior corner surfaces of the polymeric resin 26 bonded with surfaces with connector body 12 and the multiple elongated conductor pins 14.
A portion 28 of the high pressure ends 16 of the multiple elongated conductive pins 14 are coated with the polymeric resin 26. Moreover, the high pressure ends 16 of the multiple elongated conductive pins 14 include junctions 30 that connect with multiple electrical cables 32 covered with protective sheaths 34. The connector assembly 10 further includes a polymeric covering 36 over each of the junctions 30 between the multiple elongated conductor pins 14 and the multiple electrical cables 32. As shown in
Similarly,
During manufacturing of the connector assembly 10 (as shown in
Further, at the high pressure side of the pressure vessel the electrical cables 32 are connected with the connector assembly 10 (shown in
In another example, sealed connector assembly includes a sealed connector assembly having a connector body disposed partially or completely in a pressure vessel configured for providing electrical conductive paths into and out from the pressure vessel. The connector assembly includes multiple of elongated conductive pins disposed within the connector body. Each of the multiple elongated conductive pins includes a high pressure end and a low pressure end. The connector assembly also includes a polymeric resin disposed within the connector body to form a molded body surrounding the high pressure ends of the multiple elongated conductive pins for providing liquid-tight and gas-tight sealing between the polymeric resin and the plurality of elongated conductive pins and between the polymeric resin and the connector body. The molded body includes multiple fillets around all edges of the polymeric resin. The connector assembly further includes a polymeric covering over a junction that connects each of the multiple elongated conductor pins and each of multiple electrical cables at high pressure side of the pressure vessel, a portion of each of the multiple electrical cables with protective sheaths and a portion of each of the multiple elongated conductor pins coated with polymeric resin.
Advantageously, the present technology is directed towards electrical connectors that may be used to transmit electrical power and signals into and out from pressure vessels containing environmental contaminants. Further, this may result in operation of machines in pressurized environments using these electrical connectors in applications that require handling of high water vapor levels and chemical contaminants. Thus, the present technology leads to prevention of environmental contaminants to penetrate to the interior spaces of the electrical connector assembly leading to increased life of the electrical connector assemblies. Furthermore, the present technology results in improvement in scheduled product service and maintenance leading to cost saving.
Furthermore, the skilled artisan will recognize the interchangeability of various features from different examples. Similarly, the various methods and features described, as well as other known equivalents for each such methods and feature, can be mixed and matched by one of ordinary skill in this art to construct additional systems and techniques in accordance with principles of this disclosure. Of course, it is to be understood that not necessarily all such objects or advantages described above may be achieved in accordance with any particular example. Thus, for example, those skilled in the art will recognize that the systems and techniques described herein may be embodied or carried out in a manner that achieves or improves one advantage or group of advantages as taught herein without necessarily achieving other objects or advantages as may be taught or suggested herein.
While only certain features of the technology have been illustrated and described herein, many modifications and changes will occur to those skilled in the art. It is, therefore, to be understood that the appended claims are intended to cover all such modifications and changes as fall within the true spirit of the claimed inventions.