This application is a national phase under 35 U.S.C. ยง 371 of PCT International Application No. PCT/EP2014/061940 which has an International filing date of Jun. 9, 2014, which claims priority to United Kingdom Patent Application No. 1310742.0, filed Jun. 17, 2013, the entire contents of each of which are hereby incorporated by reference.
The present invention relates to a method for restricting or sealing an annulus, and in particular to sealing or restricting an open annulus around a tubular in a bore.
It is a common requirement in the field of oil and gas production to restrict or isolate a bore or an annulus. For example, in a producing well, it may be required to seal a region suffering from water breakthrough, or during drilling operations or artificial lift operations, it may be required to isolate porous rock formations into which fluids are lost.
A known method for sealing or restricting fluid flow through an annulus is to run a packing tool into a bore, which can be expanded so as to provide a seal. However, there is a limit to the amount by which a packing tool is able to expand. In addition, packing tools cannot be run into a tubular to seal around that tubular, as might be required to isolate a part of a producing well suffering from water breakthrough, for example.
It is also known to seal a bore by injecting a sealing substance such as concrete or epoxy through perforations in a tubular. However, using injection methods, it may be difficult to control where the sealant flows, and only limited control may be possible over the amount of sealant injected or the part of an annulus which is sealed. It is also known for injected sealant to leak into rock formations and fail to seal the bore, or for sealant to be eroded or washed away by flow regimes.
According to a first aspect of the invention, there is provided a method for use in restricting or sealing a bore, comprising:
The method may comprise expanding a tubular which is located in a bore to cause the tubular to split and be extended into engagement with a wall of the bore. Accordingly, the method may provide for sealing a bore.
The bore may be a well bore, or the bore may be defined by a casing, liner or a further tubular. The tubular may be located within an open bore such that tubular member is extended towards or into engagement with the face of the open bore. The method may comprise expanding a tubular into compliant engagement with a bore (such as an eccentric bore).
The method may provide for sealing of the annulus between the tubular and the bore such that fluid flow along said annulus is prevented or restricted.
The method may comprise splitting a length of the tubular. The method may comprise causing the tubular to split axially, or generally axially along a length of the tubular.
The tubular may be split along all, or a part of the region which is expanded. For example, a region of the tubular which has been expanded and split may extend at each end to transitional regions of the tubular which have been expanded and which have not been split (which may each extend in turn to a region of the tubular which has not been expanded or split).
The tubular may comprise a single tubular member or may comprise a tubing string formed of multiple tubular members connected together end-to-end.
The tubular may be perforated. The perforations may be slots and the tubular may comprise slotted tubing. The tubular may, for example, comprise production tubing, sand screen, or tubing for wellbore stimulation, such as controlled acid jet (CAJ) liner.
The method may comprise restricting or sealing the bore and sealing one or more perforations in the tubular.
The method may comprise locating an expansion tool within the tubular and using the expansion tool to expand and axially split the tubular.
At least a portion of the expansion tool may be configured to radially expand, so as to expand and split the tubular.
At least a portion of the expansion tool may be configured to radially contract, following expansion. The expansion tool may be a reusable expansion tool, for example to remove the expansion tool from, or reposition the expansion tool within the tubular.
An expandable portion of the tool may be adapted to comply with the internal profile of the tubular.
The expansion tool may be configured to limit the extension of the tubular.
The expandable portion may be operable to radially expand to a predetermined circumference.
The expansion tool may comprise a reinforcing structure configured to provide reinforcement to an expandable portion, such as a bladder. The reinforcing structure may be configured to limit expansion of the expandable portion. The reinforcing structure may surround the expandable portion.
The reinforcing structure may include protection from tearing or perforation of the bladder.
The expansion tool may be expanded to cause the tubular to split and be extended into engagement with a casing or another tubular, and the reinforcing structure may be configured to limit expansion so as not to expand and/or split the casing or other tubular.
The expandable portion may comprise a bladder and the method may comprise inflating the bladder to cause expansion, splitting and extension of the tubular. The bladder may be expanded hydraulically. The expansion tool may be as described in co-pending international application WO 2012/140512.
The expansion tool may comprise an explosive charge, to be detonated and cause expansion and splitting of the tubular. The explosive charge may be detonated to cause expansion of an expandable portion of the expansion tool, such as a bladder.
The method may comprise locating a straddle which extends across the region of the tubular which has been split. The method may comprise locating a straddle which extends across the region of the tubular which has been split and across transitional regions of the tubular which has been expanded but not split.
The method may comprise expanding the straddle so as to seal perforations within the tubular. The straddle may, for example, provide for sealing of perforations in the tubular to prevent fluids by-passing the expanded and sealed section by flowing into the tubular on one side of the expanded portion and exiting back into the bore on the other side of the tubular.
The method may comprise using a bladder of an expansion tool as a straddle, by expanding the bladder with a settable medium (such as epoxy or cement) and setting the settable medium.
The method may comprise locating an expansion tool within a tubular, which extends across a region of the tubular which has been split; and expanding the expansion tool (e.g. by expanding a bladder with a settable medium) to seal the split in the tubular.
The bladder may be provided with a cylindrical member extending therethrough. The cylindrical member may function as a conduit for injecting a settable medium into the bladder (e.g. via perforations in the cylindrical member) and/or the cylindrical member may function to guide drilling through the bladder.
The method may comprise locating the straddle within the tubular, extending across the region of the tubular which has been split, using an expansion tool.
The method may comprise locating a straddle positioned around an expansion tool and using the expansion tool to expand the straddle and seal the split in the tubular.
The expansion tool used to expand the straddle may be the expansion tool used to expand and split the tubular. The method may comprise expanding and splitting the tubular with a first expansion tool, locating a second expansion tool across the region of the tubular which has been split and expanding the second expansion tool to seal the split in the tubular.
The method may comprise providing a sealing arrangement between the straddle and the tubular. The straddle may comprise a sealing arrangement around and along some or all of the length of the straddle. The sealing arrangement may, for example, comprise a deformable or an elastomeric coating, or a coating of a sealant.
The straddle may be expanded to extend through the axial split in the tubular to engage the bore wall.
The method may be performed in a bore which is producing or in which production has been temporarily ceased e.g. in order for well stimulation or injection to take place.
The method may be used to restrict or seal a bore having a substantially larger diameter than the tubular. The diameter of the bore wall may be at least 25% or at least 50% larger than the unexpanded tubular. The diameter of the bore may be up to twice as large as the unexpanded tubular.
The method may comprise splitting a tubular along a weak zone, and/or expanding the tubular by bending around and along a predefined zone of deformation.
The weak zone may comprise a frangible portion. The predefined zone of deformation may comprise a living hinge. The weak zone and predefined zone of deformation may focus splitting and deformation of the tubular respectively, which facilitates predictable splitting and expansion of the tubular.
The method may comprise providing a tubular with a predefined zone of deformation and/or a weak zone. The method may comprise providing a tubular with a weak zone and/or a predefined zone of deformation in situ.
The method may comprise weakening a zone of the tubular, and subsequently splitting the tubular along the weak zone.
A weak zone and/or a predefined zone of deformation may be provided by use of a perforation tool, cutting tool or the like.
The method may comprise providing a region of reduced wall thickness of the tubular, for example a line or a pattern of cavities or slots.
The method may comprise splitting a tubular along and beyond a weak zone. Accordingly a weak zone may provide a starting point for a split in the tubular.
A length of the tubular may comprise more than one weak zone and/or more than one predefined zone of deformation.
A length of the tubular may comprise more than one weak zone circumferentially spaced apart and/or axially spaced apart. A length of tubular may comprise weak zones which are on diametrically opposite sides of the tubular.
The method may comprise splitting a length of the tubular into fragments and extending the fragments into engagement with a wall of the bore.
The method may comprise retaining the fragments in engagement with the wall of the bore, and/or so as to prevent fragments from falling into the annulus around the tubular or into the tubular, for example by one or more bridges or tethers.
The tubular may comprise one or more bridges or tethers.
An expansion tool may comprise or function as a bridge or a tether. For example, expandable portion of an expansion tool may function as a bridge or tether. A bridge or a tether may be positioned around or against an expandable portion of an expansion tool.
The method may comprise detonating an explosive charge so as to inflate a bladder and split a length of the tubular into fragments.
The method may comprise further or intermediate steps, as required, for example to position or reposition an expansion tool and/or the straddle.
According to a second aspect of the invention there is provided use of an expansion tool in restricting or sealing a bore, by expanding a tubular which is located in the bore to cause the tubular to split and be extended towards a wall of the bore. The expansion tool may also be used to expand a straddle which has been positioned so as to extend across the region of the tubular which has been split, so as to seal the split in the tubular. The expansion tool may be used in the method of the first aspect. The invention also extends to use of an expansion tool comprising a bladder as a straddle, by expanding the bladder with a settable medium and setting the settable medium.
According to a third aspect of the invention there is provided apparatus for use in restricting or sealing a bore, the apparatus comprising:
The apparatus may comprise a first expansion tool, a straddle and a second expansion tool configured to radially expand the straddle.
The straddle may comprise corrugations or folds. The straddle may comprise a leaf arrangement. The straddle may take the form of an expandable bladder.
The apparatus may comprise a downhole tool or a work string, the tool or work string comprising at least one radially expandable portion and at least one straddle.
The apparatus may comprise more than one straddle and/or more than two expansion tools. Thus, the apparatus may be used to expand, split and expand more than one part of a tubular and to expand a straddle to seal each said split.
The apparatus may further comprise a tubular.
The tubular may be provided with one or more weak zones and/or one or more predefined zones of deformation.
The apparatus may comprise an arrangement for weakening a tubular, such as a perforator, or a cutting arrangement.
The apparatus may be used in the method of the first aspect.
According to a fourth aspect of the invention, there is provided a tubular having a weak zone extending axially along at least a part of the length of the tubular, the weak zone adapted to preferentially split under the action of an expansion tool.
When expanded by an expansion tool, the tubular is adapted to split in a predicable manner along the weak zone.
A weak zone may extend parallel to a central axis of the tubular.
A weak zone may extend along the entire length of the tubular.
A weak zone may comprise a frangible region. A weak zone may comprise a region (e.g. a line or a strip) of reduced wall thickness. For example, a weak zone may comprise a line, or a slot pattern, or a series of cavities extending along a length of the tubular and partially through the wall of the tubular.
A weak zone may comprise a series of perforations.
The weak zone may be adapted to fail without exposing sharp edges towards the inside of an expanded and split tubular. Thus, the risk of perforating an expansion tool comprising an inflatable bladder is reduced. For example the tubular may be provided with an internal coating across the weak zone, such as an internal coating of plastics material. In use, the internal coating may deform or flow, so as to cover sharp edges.
The tubular may comprise a region of reduced thickness material extending to either side of the weak zone, which may bend outwardly under the action of an expansion tool.
The tubular may comprise a predefined zone of deformation extending axially along at least a part of the length of the tubular, adapted to deform or bend when the tubular has been split and is further expanded, under the action of an expansion tool.
Bending of a tubular around a predetermined zone of deformation may cause edges of a tubular along the split in the tubular to be pivoted away from each other, and thus away from an expansion tool.
The tubular may comprise both a weak zone and a predefined zone of deformation.
A weak zone and predefined zone of deformation may extend along the same length of tubular. A length of the tubular may comprise more than one weak zone circumferentially spaced apart and/or axially spaced apart. A predefined zone of deformation and weak zone may be diametrically opposite each other along at least a part of the length of the tubular. A length of tubular may comprise weak zones which are diametrically opposite each other.
A length of tubular having circumferentially spaced apart weak zones may comprise one or more weak zones or predetermined zones of deformation extending circumferentially around the tubular (e.g. at the end of the circumferentially spaced apart weak zones).
The tubular may comprise a bridge or a tether extending from a portion of the tubular along a length of the tubular having a weak zone, to a portion of the tubular without a weak zone.
The bridge or tether may comprise a band or mesh secured to a wall (inside or outside of) the tubular.
The tubular may be perforated and may be provided with perforations along some or all of its length. The tubular may, for example, be slotted tubing or a CAJ liner. A weak zone, or a predefined zone of deformation, may for example comprise a series of perforations which are more closely spaced than the perforations away from the said weak zone.
According to a fifth aspect of the invention there is provided a method for weakening a tubular, comprising providing a weak zone extending axially along a part of the length of the tubular.
The method may comprise providing a predefined zone of deformation associated with (e.g. diametrically opposite) the weak zone.
A weak zone and/or a predefined zone of deformation may be provided by reducing the wall thickness of a region of the tubular. The method may comprise running a tool into the tubular, wherein the tool is a chemical, mechanical or hydraulic cutting tool, and reducing the wall thickness of the tubular using the tool.
The weak zone and/or predefined zone of deformation may be provided in a tubular in a bore (e.g. in a wellbore).
Further preferred and optional features of each aspect of the invention correspond to preferred and optional features of any other aspect of the invention.
Example embodiments of the invention will now be described with reference to the following figures in which:
The method by which the apparatus shown in
As shown in
The bladder 5 of the first expansion tool 1 is then deflated, as shown in
As shown in
As shown in
A first expansion tool 101 is secured to a work string 103 (
The first expansion tool 101 is then retrieved and a second expansion tool 109, having a bladder 111 and tubular reinforcing member 113 which are longer than those of the first expansion tool 101, is secured to the work string 103 (
As shown in
In alternative embodiments, the method may be carried out using a single expansion tool. The straddle may be located in the region of a tubular which has been expanded and split by the expansion tool and released from a position around the work string above the expansion tool so that the expansion tool can be repositioned within the straddle and used to expand the straddle and seal the split in the tubular.
The method described above may be facilitated by use of a tubular which is adapted to preferentially split along a weak zone.
A length of tubular 200 having a series of weak zones 202 is shown in
Extending along the length of the tubular and diametrically opposite the series of weak zones, is a predefined zone of deformation (not visible in
As the tubular 200 is extended towards the wall of the bore (as described above) the walls of the tubular in the region of the tubular which has been split, preferentially bend around the predefined zone of deformation 206. This increases the degree to which the torn edges of the weak zone 202 face away from the bladder 5 of the expansion tool 1, and also facilitates extension of the tubular 200 towards the bore 19, as shown in
A tubular having weak zones (e.g. production tubing) can be run into a bore and function normally and, as necessary (for example when water break through is detected) the apparatus shown in
The weak zones 302a and 302b may be provided in situ, for example by a mechanical drill or grinder positioned on the work string, or by shaped charges. When the weak zones are created in situ, material will be taken away from the inside rather than the outside of the tubular.
As shown in
A second expansion tool may then be run into the bore together with a straddle, so as to expand the straddle and seal the split tubular in the manner described above, with reference to
In alternative embodiments (not shown) the tubular may expand, split and break into fragments along the length of the tubular 300, and forced outwardly into engagement with the bore wall by the expanding bladder. The portion(s) 407a,b of the ruptured bladder may then remain in the bore 19 following removal of the tool 401, positioned so as to bridge between the fragments and the remainder of the tubular, and retain the fragments in position, so as to prevent them from falling into the bore or into the tubular.
Number | Date | Country | Kind |
---|---|---|---|
1310742 | Jun 2013 | GB | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2014/061940 | 6/9/2014 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2014/202419 | 12/24/2014 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3167122 | Lang | Jan 1965 | A |
4507019 | Thompson | Mar 1985 | A |
4696606 | Herron | Sep 1987 | A |
4767236 | Rice | Aug 1988 | A |
6253850 | Nazzai | Jul 2001 | B1 |
6412565 | Castano-Mears | Jul 2002 | B1 |
6588983 | Tenbusch, II | Jul 2003 | B1 |
7121351 | Luke | Oct 2006 | B2 |
7124821 | Metcalfe et al. | Oct 2006 | B2 |
7401647 | Baycroft | Jul 2008 | B2 |
7798223 | Duggan et al. | Sep 2010 | B2 |
7832477 | Cavender | Nov 2010 | B2 |
8978776 | Spray | Mar 2015 | B2 |
20060042801 | Hackworth et al. | Mar 2006 | A1 |
20060076147 | Ring | Apr 2006 | A1 |
20070000664 | Ring et al. | Jan 2007 | A1 |
20080283253 | Buytaert | Nov 2008 | A1 |
20100038076 | Spray et al. | Feb 2010 | A1 |
Number | Date | Country |
---|---|---|
0207030 | Dec 1986 | EP |
2167156 | May 1986 | GB |
WO-9213226 | Aug 1992 | WO |
WO-2007106429 | Sep 2007 | WO |
WO-2012140512 | Oct 2012 | WO |
WO-2013048371 | Apr 2013 | WO |
Entry |
---|
International Search Report PCT/ISA/210 for International Application No. PCT/EP2014/061940 dated Nov. 13, 2014. |
Written Opinion of the International Searching Authority PCT/ISA/237 for International Application No. PCT/EP2014/061940 dated Nov. 13, 2014. |
Number | Date | Country | |
---|---|---|---|
20160123122 A1 | May 2016 | US |