Disclosed are apparatuses useful for forming a seal in a subterranean wellbore and methods for using the disclosed apparatuses for forming a seal in a wellbore. The apparatus is a part of a system that provides a wellbore seal that is capable of communicating the status of the applied seal to the user.
Wells have been drilled since antiquity to extract water from subterranean sources for private or commercial use. In more recent times wells have been used to recover subterranean sources of hydrocarbons, for example, crude petroleum and natural gas; and in some instances an inert gas such helium.
Typically after a hole has been bored into the ground and in some instances a casing is inserted which provides a stable outside surface referred to as a wellbore. Into the wellbore is inserted a conduit which can further comprise other conduits or devices necessary for working the recovery of the material being extracted. This conduit is sometimes referred to as a mandrel by the artisan.
In current operations, a packer is circumferentially deposed along the outer surface of the conduit and contains an expandable sealing device. When activated the sealing device divides the annulus created when the packer-containing conduit is first inserted into the wellbore prior to activation. Activation of the seal creates a cavity below the packer.
Current packers can be activated by various means, for example, by applying a force to the top of the packer causing expansion of the seal or by addition of a fluid which causes the seal to expand against the inner wall of the wellbore casing. The user of these methods for sealing a wellbore, however, has no way of knowing whether the seal is completely engaged. For example, whether the seal has uniformly expanded or whether the seal is against the inner wall of the casing with equal pressure or force along the whole circumference of the seal.
Therefore, there is a long felt need for seals, sealing elements, packers, conduits fitted with packers, seals and sealing elements that can communicate to the user the degree to which the seal has expanded thereby alerting the user to possible malfunction of the seal during operation of the well.
In addition, during some drilling operations it can become necessary to form a plurality of cavities in order to sequentially remove subterranean deposits. The failure of one or more seals between segregated cavities can cause the formation of an undesirable mixture of two deposits, for example, water and hydrocarbons. Therefore, there is a long felt need for a system that allows for verification of the status and properties of a subterranean wellbore seal.
It is to be noted that the appended figures illustrate only typical embodiments, and do not limit the scope of the disclosure, as there may be other and equally effective embodiments that one skilled in the art would recognize which are within the scope of the disclosure.
Before the present materials, compounds, compositions, articles, devices, and methods are disclosed and described, it is to be understood that the aspects described below are not limited to specific synthetic methods or specific reagents, as such may, of course, vary. It is also to be understood that the terminology used herein is for the purpose of describing particular aspects only and is not intended to be limiting.
Also, throughout this specification, various publications are referenced. The disclosures of these publications in their entireties are hereby incorporated by reference into this application in order to more fully describe the state of the art to which the disclosed matter pertains. The references disclosed are also individually and specifically incorporated by reference herein for the material contained in them that is discussed in the sentence in which the reference is relied upon.
In this specification and in the claims that follow, reference will be made to a number of terms, which shall be defined to have the following meanings:
All percentages, ratios and proportions herein are by weight, unless otherwise specified. All temperatures are in degrees Celsius (° C.) unless otherwise specified.
A weight percent of a component, unless specifically stated to the contrary, is based on the total weight of the formulation or composition in which the component is included.
“Admixture” or “blend” is generally used herein means a physical combination of two or more different components
Throughout the description and claims of this specification the word “comprise” and other forms of the word, such as “comprising” and “comprises,” means including but not limited to, and is not intended to exclude, for example, other additives, components, integers, or steps.
As used in the description and the appended claims, the singular forms “a,” “an,” and “the” include plural referents unless the context clearly dictates otherwise.
“Optional” or “optionally” means that the subsequently described event or circumstance can or cannot occur, and that the description includes instances where the event or circumstance occurs and instances where it does not.
Ranges can be expressed herein as from “about” one particular value, and/or to “about” another particular value. When such a range is expressed, another aspect includes from the one particular value and/or to the other particular value. Similarly, when values are expressed as approximations, by use of the antecedent “about,” it will be understood that the particular value forms another aspect. It will be further understood that the endpoints of each of the ranges are significant both in relation to the other endpoint, and independently of the other endpoint. It is also understood that there are a number of values disclosed herein, and that each value is also herein disclosed as “about” that particular value in addition to the value itself. For example, if the value “10” is disclosed, then “about 10” is also disclosed. It is also understood that when a value is disclosed, then “less than or equal to” the value, “greater than or equal to the value,” and possible ranges between values are also disclosed, as appropriately understood by the skilled artisan. For example, if the value “10” is disclosed, then “less than or equal to 10” as well as “greater than or equal to 10” is also disclosed. It is also understood that throughout the application data are provided in a number of different formats and that this data represent endpoints and starting points and ranges for any combination of the data points. For example, if a particular data point “10” and a particular data point “15” are disclosed, it is understood that greater than, greater than or equal to, less than, less than or equal to, and equal to 10 and 15 are considered disclosed as well as between 10 and 15. It is also understood that each unit between two particular units are also disclosed. For example, if 10 and 15 are disclosed, then 11, 12, 13, and 14 are also disclosed.
The term “piezoresistive” means the property of a material, whether a single compound or a mixture of compounds, wherein physical deformation of the material results in a change in the electrical properties of the material, for example, the electrical resistivity, independent of the cause of the physical deformation. Non-limiting examples of forces which can cause a deformation in a material resulting in a change in electrical properties includes stress, strain, pressure, temperature, or contact with various fluids and/or gases.
The term “piezoresistive material” is a material that exhibits piezoresistive behavior as defined herein.
The terms “electrical contact” or “electrical communication” mean that two materials are disposed in a manner such that an electrical current is capable of flowing between two materials.
The term “lateral resolution” means the accuracy in measuring the distance between two points on a surface wherein a force has been applied to each point either simultaneously or in series. As such, the greater the lateral resolution the higher the accuracy in determining the location at which a force is applied to one or more locations on a surface.
The term “packer” means a device or system designed to be deployed within a subterranean wellbore and for creating a seal within the wellbore. In one aspect, a packer comprises a tubular member and a sealing element disposed about the tubular member.
The term “swellable” means the ability of a material to increase in size, i.e., swell when acted upon by one or more activating means. The increase in size, for example, expansion in one or more direction, can be activated by, inter alia, by absorption, adsorption, osmosis, or any other means described further herein. As used herein as it relates to the disclosed sealing element, the sealing element is capable of expanding in volume in any and all directions, for example, to fill a space. The swellable sealing element can be formed to expand in a single direction or in multiple directions as chosen by the user.
The term “swell rate” shall mean the rate with which a composition swells or otherwise increases in volume.
The term “activating” means a material, whether liquid, solid, or gaseous, or any combination thereof, that can cause a swellable composition to increase in volume or size in any manner as described herein.
The terms “conduit” and “mandrel” are used throughout the description to mean a tube onto which the disclosed seals are applied and which is further inserted into the wellbore. Conduit and mandrel in their most general meaning can be a pipe or hollow tube, although each can comprise other elements not specifically disclosed herein.
The term “packer” as used herein is a device that can be run into a wellbore having a smaller initial outside diameter such that when the packer expands a seal is created within the wellbore. The disclosed packer can comprise further elements not specifically disclosed herein and which can function in combination with or in accordance with the disclosed sealing apparatuses. For example, a packer can include the conduit to which it is affixed, as well as other items known to those of skill in the art.
The term “sleeve” means a tubular piece, for example, metal, polymer or composite material that is hollow and can slidably be inserted into a wellbore wherein the inside diameter is less than the outside diameter of a conduit that is inserted therein.
The term “resistivity” means an intrinsic property of a material, related to the conduction of electricity, or passage of an electrical current. For example, the disclosed piezoresistive compositions can have a particular resistivity as described herein. The disclosed compositions before being acted upon by a force will have an “initial resistivity.” After being acted upon by a force and the force is subsequently removed the composition will have a “recovered resistivity.” The recovered resistivity can have any value equal to, less than, or greater than the initial resistivity.
The term “resistance” means an extrinsic property of a particular circuit, as in Ohm's law: E=iR where E is the potential difference across a conductor, i is the current through the conductor, and R is the resistance of the circuit. For example, as described herein, a disclosed piezoresistive composition, possessing a certain resistivity, can be part of a circuit comprising the piezoresistive composition and at least two electrodes. The circuit thus comprised will have a certain resistance.
The present disclosure provides an apparatus that when activated is capable of forming a seal in a wellbore and is capable of communicating the status of the seal. The present disclosure also provides a system for using the disclosed sealing apparatus to form one or more seals in a wellbore and communicating the status of the seals either individually or together.
Disclosed herein is an apparatus for forming a seal in a wellbore, for example, a wellbore or a borehole used in petroleum, natural gas, or other drilling operations. The site at which the seal is formed can be in any position along the boreholes. For example, the seal can be formed along a vertical or a horizontal portion of the wellbore or plurality of seals can be positioned along any portion of the wellbore.
The disclosed apparatus comprises:
a) at least one expandable sealing element; and
b) at least one sensor;
wherein each sensor contains at least one pair of electrodes that can be used to communicate to the user the status of the seal being formed.
In one embodiment, the disclosed apparatus comprises:
In one aspect the apparatus comprises at least one sensor wherein the at least one sensor comprises at least about 0.1% of the piezoresistive composition as described herein. In one embodiment, a plurality of piezoresistive compositions are present that each comprise at least about 0.1% of the disclosed piezoresistive composition. For example, a sensor can have a mass of 10,000 grams and a portion of which sensor is a thin film or layer of piezoresistive material. In this non-limiting example, the sensor will comprise at least about 10 grams of piezoresistive composition. The piezoresistive composition can be along one or all surface, i.e., a coating, or the sensor can be fabricated so the piezoresistive material is located in strands or filaments within the sensor.
In use, the disclosed apparatus can be configured in any manner chosen by the user. Disclosed herein are non-limiting embodiments of possible configurations.
In one embodiment the apparatus is selectively positioned along the outside of a conduit or mandrel that is inserted into the wellbore. The conduit as defined herein is a hollow tube for insertion into the wellbore. The conduit can be rigid or flexible and can include one or more other auxiliary tubes or conduits inserted therein. For example, an auxiliary conduit can be used to supply a means for electrical communication between the electrodes and the user. Alternatively the auxiliary conduits can be used for any purpose chosen by the user.
In an iteration of this embodiment, as generally depicted in
The non-limiting embodiments depicted in
As set forth herein, the sealing elements are capable of expanding to form a seal when contacting a sealing surface. The following are non-limiting examples of materials which can comprise the disclosed sealing elements. As disclosed herein the sealing element can be homogeneous or heterogeneous. For example, the outer edges of the sealing element can comprise a different composition. This can be important when the sealing surface is not a smooth surface, but an irregular surface, for example, a wellbore that does not comprise a sleeve or casing inserted into the raw hole or open hole. As such, the sealing element can expand against the earth instead of a smooth surface.
The disclosed sealing elements can be activated by various means, for example, by applying a force to the top of the sealing element causing expansion, or by addition of a fluid which causes the sealing element to expand, or swell. For example, the activating means can be one or more liquids, gases or a combination thereof. For example, the activating means can be a composition which is commonly found, encountered, or utilized during wellbore operations such as during, the drilling, the completion, or the production phases of oil, gas, or geothermal wells. Non-limiting examples of fluids include drilling fluids, completion fluids, stimulating fluids, and acidizing fluids. As such, the fluid can be hydrocarbon based, oil based, water based, or an emulsion or inverted emulsion. In use, in one non-limiting iteration a fluid is used as the activating means. In one example, “diesel” can be used as the activating means. For the purposes of the present disclosure and this non-limiting example, diesel is the fractional distillate at atmospheric pressure of petroleum between about 200° C. and 350° C. Selection by the user of the composition comprising the sealing element will determine the rate and degree of expansion of the sealing element by an activating means.
In one aspect, the sealing element comprises one or more non-metallic materials such as a polymer or polymer composite. For example, the sealing element can comprise an elastomer, a thermoplastic, or a combination thereof. In one embodiment, the sealing element comprises an elastomer. On category of suitable elastomers includes elastomers which have “swellable” properties. Non-limiting examples of these elastomers include ethylene-propylene-copolymer rubber, ethylene propylene diene monomer rubber, ethylene-propylene-diene terpolymer rubber, butyl rubber, natural rubber, halogenated butyl rubber, styrene butadiene rubber, ethylene vinyl acetate rubber, nitrile butadiene rubber, hydrogenated nitrile butadiene rubber, highly saturated nitrile rubber, chloroprene rubber, polyisoprene, polyisobutylene, polybutadiene, polysiloxane, poly-dimethylsiloxane, and/or mixtures or derivatives thereof. The polymers can be further crosslinked once the sealing element is fabricated, for example, by any known chemical crosslinking processes.
The sealing element can further comprise one or more adjunct ingredients, such as fillers (for example carbon black and silica), plasticizers, processing aids, anti-oxidants, curatives, or other ingredients known in the art of polymer compounding.
The sealing element can also further comprise one or more nanomaterials dispersed therein. As used herein, a nanomaterial is a material having at least one dimension that is less than 100 nm. One type of nanomaterial are the “carbonaceous” nanomaterials, non-limiting examples of which include carbon nanotubes, carbon nanosprings, carbon nanocoils, graphene, graphene-oxide, chemically converted graphene, exfoliated graphite, intercalated graphite, grafoil, carbon nanoonions, vapor grown carbon fibers, pitch based carbon fibers, or polyacrylonitrile (PAN) based carbon fibers. Other forms of carbonaceous nanomaterials are known in the art and are suitable for the disclosure. The nanomaterial can be chemically modified, for example, functionalized or otherwise derivatized. The nanomaterial can be functionalized in any manner determined by the user to facilitate providing the sealing element with the desired properties. In one aspect, the nanomaterial is functionalized in order to provide increased compatibility with the polymeric material into which the nanomaterial is dispersed.
Functionalization of a dispersed nanomaterial can also be used to affect a particular property of the sealing element. For example, degree of expansion, amount or degree of expansion per degree temperature, amount or degree of expansion per unit force applied by the activating means, and the like. The nanomaterial can be functionalized to increase or decrease the swell rate, for example by enhancing or retarding the rate at which an activation means, such as a liquid or a gas, is taken up by the sealing element.
In other aspect, functionalization can alter the equilibrium concentration of an activating means within the polymer comprising the expandable sealing element, and thereby alter the equilibrium volume of the expandable sealing element. The equilibrium concentration represents the maximum amount of an activating means that can be present within the sealing element under a fixed set of conditions. The equilibrium volume represents the maximum attainable volume of the sealing element under a fixed set of conditions. In one aspect, functionalization of the nanomaterial dispersed in the polymer composition can increase the equilibrium concentration of an activation means within the expandable sealing element, thereby increasing the equilibrium volume of the expandable sealing element and further the force with which the sealing element impinges upon a surface or surfaces. In another aspect, functionalization of the nanomaterial dispersed in the polymer composition can decrease the equilibrium concentration of an activating means within the expandable sealing element, thereby decreasing the equilibrium volume.
The plurality of nanomaterials can be of one type, for example carbon nanotubes, or can be a mixture of more than one type of nanomaterial, for example a mixture of carbon nanotubes and graphene. The plurality of nanomaterials can comprise any combination of nanomaterials in any ratio or ratios.
In one aspect, the disclosed sealing element comprises:
a) from about 50% to about 99.99% by weight of one or more polymers; and
b) from about 0.01% to about 50% by weight of one or more nanomaterials.
In another aspect, the sealing element comprises:
a) from about 60% to about 99.99% by weight of one or more polymers; and
b) from about 0.01% to about 40% by weight of one or more nanomaterials.
In a further aspect, the sealing element comprises:
a) from about 70% to about 99.99% by weight of one or more polymers; and
b) from about 0.01% to about 30% by weight of one or more nanomaterials.
In a yet further aspect, the sealing element comprises:
a) from about 80% to about 99.99% by weight of one or more polymers; and
b) from about 0.01% to about 20% by weight of one or more nanomaterials.
In yet another aspect, the sealing element comprises:
a) from about 90% to about 99.99% by weight of one or more polymers; and
b) from about 0.01% to about 10% by weight of one or more nanomaterials.
In still another aspect, the sealing element comprises:
a) from about 95% to about 99.99% by weight of one or more polymers; and
b) from about 0.01% to about 5% by weight of one or more nanomaterials.
In one aspect, both the expandability (swell rate) and the equilibrium volume of the polymer composition are inversely proportional to the amount of nanomaterial dispersed in the polymer, i.e., a greater amount of nanomaterial leads to a reduced expansion rate and a lower equilibrium volume of the composition. In addition, the greater the amount of nanomaterial, the higher the observed elastic modulus of the sealing element, including tensile, compressive, and shear modes of deformation. These factors affect the utility of the sealing element with respect to expansion rate, equilibrium swell, and extrusion resistance, or differential pressure holding capability.
The nanomaterial can be uniformly distributed throughout the polymer composition. In other aspects, the nanomaterial can be dispersed within the polymer composition in a non-uniform manner. For example, the nanomaterial can be preferentially localized in certain regions of the polymer composition. In another aspect wherein the polymer composition comprises more than one polymer, the nanomaterial can be located within one polymer and not in others. As such, this aspect means a complete absence of nanomaterial in one or more regions where the particular polymer is located within the sealing element while all of the nanomaterial present is located in one or more other regions. Alternatively, the nanomaterial concentration in one region or regions of the sealing element is higher than in another region or regions although all such regions can comprise nanomaterial. In a further example, the nanomaterial can be located in a particular region or segment of the sealing element, for example near the outer edge, near the inner edge, or in a particular region, segment, or band in between the outer edge and the inner edge. In one aspect, the nanomaterial can be dispersed in such a way as to create a nanomaterial concentration gradient which changes in either a progressive (gradient) or quantum manner in a horizontal, vertical, radial, or azimuthal direction within the sealing element. Because the local concentration of nanomaterial can affect the swell rate or equilibrium volume of the sealing element as described herein, a non-uniform dispersion of the nanomaterial is useful to tune the local expanding behavior of the sealing element. For example, in conventional expandable sealing elements that are vertically disposed in a wellbore, the top and bottom ends can expand (swell) at a faster rate than the center due to increased exposure to an activation means and to decreased physical constraint. This results in an uneven swell rate across the profile of the sealing element. By employing a non-uniform dispersion of nanomaterial wherein the nanomaterial concentration is highest at top and bottom while decreasing towards the center of the sealing element, one can achieve a more uniform swell rate across the vertical profile of the sealing element. In another aspect, one or both of the expansion rate and the equilibrium volume of the sealing element are non-uniform due to a non-uniform concentration of nanomaterial within the polymeric composition. An alternative approach in achieving non-uniform expanding of an expandable sealing element is disclosed in US 2011/0120733 which is incorporated herein by reference in its entirety.
Disclosed herein are sensors that can detect the presence of a force applied thereto, i.e., the degree to which the sealing element has expanded. As such, the sensor can be used in conjunction with the sealing element to determine the position of sealing element expansion, the amount of sealing element expansion, as well as the integrity of the seal.
The disclosed sensors exhibit piezoresistive properties in that a fixed current passing between two electrodes in contact with the sensor will have an initial measurable resistance. As such, the sensor is a piezoresistive composition all or in part. Upon deformation of the sensor by a force, for example, expansion of the sealing element, the resistivity of the sensor will change. This change can be identified by the user, for example, by measuring the corresponding change in current flow. Alternatively, the user can adjust the operating parameters of the current source such that what is measured is the resulting in observed resistance. The method by which the change is observed is, however, left to the choice of the user.
In another aspect the disclosed sensors comprise at least about 1% by weight of a piezoresistive composition. In a further aspect the disclosed sensors comprise at least about 10% by weight of a piezoresistive composition. In a yet further aspect the disclosed sensors comprise at least about 25% by weight of a piezoresistive composition. In a still further aspect the disclosed sensors comprise at least about 50% by weight of a piezoresistive composition. In a yet another aspect the disclosed sensors comprise at least about 75% by weight of a piezoresistive composition. In a still yet further aspect the disclosed sensors comprise 100% by weight of a piezoresistive composition.
The disclosed sensors comprises:
i) one or more polymers; and
ii) a plurality of conductive elements dispersed therein.
In one aspect, the disclosed sensors comprise:
i) one or more polymers;
ii) a plurality of conductive elements dispersed therein; and
iii) carbon black.
In a further aspect, the disclosed sensors comprise:
i) one or more polymers;
ii) a plurality of conductive elements dispersed therein; and
iii) one or more adjunct ingredients.
In certain embodiments of the disclosed sensors, the plurality of conductive elements comprises a mixture of more than one type of conductive elements. In certain further embodiments the plurality of conductive elements comprises a mixture of more than one type of conductive elements wherein at least one type of conductive element is a nanomaterial. As used herein, nanomaterial is a conductive element wherein at least one of the dimensions is less than 100 nm in length.
In a further aspect, the conductive element can comprise a carbonaceous material. Non-limiting examples of suitable carbonaceous materials include: carbon nanotubes, carbon nanosprings, carbon nanocoils, graphene, graphene-oxide, chemically converted graphene, exfoliated graphite, intercalated graphite, grafoil, carbon nanoonions, vapor grown carbon fibers, pitch based carbon fibers, or polyacrylonitrile (PAN) based carbon fibers.
In another aspect, the sensors comprise carbon black [C.A.S. NO. 1333-86-4]. Carbon black is virtually pure elemental carbon in the form of colloidal particles that are produced by incomplete combustion or thermal decomposition of gaseous or liquid hydrocarbons under controlled conditions. A still yet further embodiment relates to the use of two or more (a plurality) conductive elements in combination.
In another aspect, the piezoresistive composition can be an admixture of two or more conductive elements. In one embodiment, this admixture of conductive elements can be dispersed homogeneously throughout the piezoresistive composition. In another embodiment, the formulator can disperse different conductive elements at different locations within the composition. This can be done to increase or decrease the electrical conductivity and to increase precision in measuring applied forces.
The polymers that can comprise the disclosed sensors can belong to one or more of the following non-limiting general classes of polymers, for example, thermoplastic, elastomeric, thermoplastic elastomeric, or thermoset polymers. The polymer can be in any form, for example, amorphous, semi-crystalline, crystalline, liquid crystalline, or a combination thereof. The following are non-limiting examples of elastomeric polymers suitable for use in preparing the disclosed sensors: polyphosphazene elastomers, natural rubber (NR), polyisoprene (IR), butyl rubber (IIR) and halogenated versions thereof, polybutadiene (BR), styrene-butadiene rubber (SBR), nitrile butadiene (NBR) and hydrogenated nitrile butadiene (HNBR), polychloroprene (CR), ethylene propylene rubbers (EPM and EPDM), silicone rubbers (SI, Q, VMQ), polydimethylsiloxane (PDMS) and derivatives, ethylene vinyl acetate (EVA), polymethylmethacrylate (PMMA), fluroroelastomers such as fluorinated ethylene propylene monomer rubber (FEPM, FKM), and perfluroelastomers (FFKM) such as those made by copolymerization of monomers such as tetrafluoroethyelene and hexafluoropropylene.
In another embodiment, the disclosed piezoresistive composition sensor is a piezoresistive membrane as is disclosed in U.S. Provisional Application 61/494,378, included herein by reference in its entirety.
In one aspect of these embodiments, the polymer comprising the piezoresistive composition is similar to the polymer comprising the sealing element, irrespective of adjunct components. In another aspect, the polymer comprising the piezoresistive composition identical to the polymer comprising the sealing element, e.g. comprising the same primary polymer component. In other aspects, the primary polymer comprising the piezoresistive composition is of a different polymer class than the primary polymer comprising the sealing element. In certain aspects thereof, the primary polymer comprising the piezoresistive composition chemically complements the primary polymer comprising the sealing element. In certain aspects the piezoresistive composition fulfills at least one of the following characteristics:
The piezoresistive composition comprising the disclosed sensor can possess certain physical properties that imbue the disclosed sensor with certain advantages over prior art. For example, the piezoresistive compositions can possess favorable creep, fatigue resistance, and hysteresis properties. In other aspects, the fatigue resistance of the piezoresistive composition comprising the disclosed sensor enables the disclosed sensors to recover any deformation caused by an applied force and thereby to return to or near to its original state. For example, the resistivity is recoverable to about 50% or more, about 60% or more, about 70% or more, about 80% or more, about 90% or more, or about 100% of the original value prior to application of the force. In another aspect the piezoresistive composition can exhibit a low hysteresis with respect to the resistivity change. In one aspect, the hysteresis is less that about 20% of the measured change in resistance. In another aspect, the hysteresis is less that about 10% of the measured change in resistance. In yet another aspect, the hysteresis is less that about 5% of the measured change in resistance. In a still yet further aspect, the hysteresis is less that about 2% of the measured change in resistance. A further advantage of the disclosed piezoresistive compositions relates to low resistivity creep, or change in resistivity, when subjected to a fixed or a constant applied force or pressure. In one iteration of this aspect, the change in resistivity is less than about 30% over a period of from about 5 minutes to about 5 hours under constant or relatively constant force or pressure applied thereto. In another iteration of this aspect, the change in resistivity is less than about 15% over a period of from about 5 minutes to about 5 hours. In a further iteration of this aspect, the change in resistivity is less than about 10% over a period of from about 5 minutes to about 5 hours. In a yet further iteration of this aspect, the change in resistivity is less than about 5% over a period of from about 5 minutes to about 5 hours. In a yet further iteration of this aspect the change in resistivity is less than about 30% over a period of more than about 5 days under constant or relatively constant force or pressure applied thereto.
In one aspect, the resistivity of the piezoresistive composition changes by at least one order of magnitude in response to an applied force or pressure, i.e., from about 100 MOhm to about 10 MOhm, or from about 10 Ohm to about 1 Ohm. In another aspect, the resistivity of the membrane changes by at least two orders of magnitude in response to an applied force. In a further aspect, the resistivity of the membrane changes by at least three orders of magnitude in response to an applied force. In a still further aspect, the resistivity of the membrane changes by at least four orders of magnitude in response to an applied force. In a yet another aspect, the resistivity of the membrane changes by at least five orders of magnitude in response to an applied force.
In yet still another aspect of the disclosed sensors, the piezoresistive composition membrane can exhibit a change in resistivity that corresponds to the amount of a force or pressure acting upon the membrane as determined by the formulator. In one embodiment, the membrane can exhibit a change in resistivity of at least about three orders of magnitude when a force from about 0.01 Newtons (N) to about 20 N is applied thereto. In another aspect, the piezoresistive composition can exhibit a change in resistivity of at least about three orders of magnitude when a force from about 20 Newtons (N) to about 500 N is applied thereto. In certain aspects, the piezoresistive composition can exhibit a change in resistivity of at least about three orders of magnitude when a force greater than about 500 N is applied thereto. In another aspect, the piezoresistive composition comprising the disclosed sensor exhibits a volume change of less than about 50%, less than about 40%, less than about 30%, less than about 20%, or less than about 10% when exposed to the same triggering medium as the disclosed sealing element and for the same period of time.
The disclosed sensor further comprises a means for measuring the electrical properties of the piezoresistive composition. In certain aspects, the means for measuring the electrical properties comprise microelectromechanical (MEMS) technology. In other aspects, the means for measuring the electrical properties of the piezoresistive composition comprises more than one electrode, wherein the electrodes are spatially displaced one from another. In one aspect, the electrodes comprise metallic electrodes, such as copper electrodes. The electrodes can be disposed on one side or face of the piezoresistive composition, or can be disposed on opposite sides or faces of the piezoresistive composition. Other metallic compositions that can serve as electrodes are known in the art, and the disclosure is not limited in this respect. In one aspect, the more than one electrode can comprise an array of Schottky diodes. In one aspect the diodes comprising the Schottky diode array are supported on or affixed to a substrate, and are further in contact with the piezoresistive composition. The diodes or electrodes can placed arranged in a regular pattern, or array, such that the spacing between electrodes is uniform and fixed. In one aspect the individual electrodes are also uniform in size. In another aspect, the electrodes vary in size, or may be grouped by size. The size, spacing, and otherwise arrangement of the electrodes is chosen depending on the desired spatial resolution of the resistivity measurements. For example, in certain aspects it is desirable to achieve a high spatial resolution, thereby necessitating small spacing between the electrodes, for example less than about 5 micrometer. In other aspects, the spacing between the electrodes can be from about 5 micrometer to about 2000 micrometer. In another aspect, the electrodes are arranged in an array, such as, for example, a 2×2, 3×3, 4×4, 16×16 or 1×2, 2×4, 4×8, etc. arrays. The array can be of any suitable configuration or size, and the disclosure is not limited in this respect. The size of the individual electrodes is similarly chosen to be suitable for a particular end use. For example, in certain aspects, the electrodes may be from about 1 micrometer to about 2000 micrometer in diameter. In other aspects, the electrode may be from about 10 micrometer to about 100 micrometer, or from about 20 micrometer to about 100 micrometer, or from about 30 micrometer to about 100 micrometer. The electrodes themselves may function as a component of a transistor, (source, drain, or gate), a diode, or a resistor. Provision is made for electrical communication between at least a portion of and as many as all of the electrodes. Further provision is made for connection or communication with the outside world. In one aspect, each individual electrode is electrically addressable. In another aspect, groups or arrays of electrodes are electrically addressable as a group. In one aspect, passive circuitry is employed for the purpose of addressing the electrode or electrodes. In another aspect, active matrix circuitry can be used for the purpose of addressing the electrode or electrodes. In one aspect the circuitry is fabricated using thin film circuitry with amorphous Si as the active semiconductor. Other semiconductors are also suitable, such as, for example, semiconductors from Groups II-VI of the Periodic Table of Elements, such as CdS, ZnO, InZnO, and InGaZnO. Organic-based transistors are also suitable for the disclosure. In various aspects, the array is fabricated by photolithography, inkjet or reel-to-reel methods. The electrodes and active components of the diodes can be deposited onto or affixed to the substrate by one or more means, such as vapor deposition, lithography, ink jet printing, or screen printing. Other means of electrode deposition are known in the art and are suitable for the disclosure. In certain aspects, the electrodes are arranged in such as a way that the device is capable of geographically locating a change in resistance of the piezoresistive composition of the disclosure. For example, a certain electrode or set of electrodes will detect a change in resistance, whereas other electrode(s) spatially displaced from the first electrode or set of electrodes will detect a smaller change or no change in resistance. In certain aspects, the change in resistance, whether local or global, is able to be translated into a local or global applied force. The disclosed sensor can be operable to measure changes in the ‘in-plane’ electrical properties of the piezoresistive composition, or can be operable to measure changes in the ‘through-plane’ electrical properties of the piezoresistive composition. The preferred arrangement is determined in light of the overall apparatus configuration.
In one embodiment, the piezoresistive composition is in intimate contact with the electrodes, meaning that electrical current can flow between the electrodes via the bridging piezoresistive composition. Herein, the measured resistance in a state of zero applied force or pressure can still be high, for example at least about 0.1 MOhm, or at least about 1 MOhm, or at least about 10 MOhm, or at least about 100 MOhm, or higher. In this embodiment, it is the piezoresistive nature of the piezoresistive composition that results in a change in resistance between the electrodes upon the application of a force or pressure to the piezoresistive composition.
In another embodiment, the piezoresistive composition and at least two electrodes does not depend on a piezoresistive nature of the piezoresistive composition. In this embodiment, the sensor is can provide measurements as described herein, but the change in measured electrical properties is due to variable contact between the piezoresistive composition and the electrodes. Thus, the application of a force or pressure to the piezoresistive composition causes an increase in the contact surface area between the piezoresistive composition and the electrodes, or an increase in the number of points of contact between the piezoresistive composition and the electrodes, or both. Either case results in a reduced measured resistance between the at least two electrodes, and enables the sensor to operate as described herein.
In one aspect, the piezoresistive composition comprising the disclosed sensor is at least about 10 μm, or at least about 100 μm, or at least about 500 μm, or at least about 1,000 μm, or at least about 10,000 μm in thickness.
In another aspect, the piezoresistive composition exhibits a volume swell of less than about 50%, less than about 25%, or less than about 5% when exposed to a medium comprising the activating means that the disclosed sealing element is exposed to, as described herein, for a period of at least about 12 hr. In yet another aspect, the piezoresistive composition exhibits approximately the same volume swell as the disclosed sealing element that the sensor is disposed in relation to, upon exposure to a medium comprising the activating means for any period of time. For example the swell of the piezoresistive composition can be less than about 30%, less than about 20%, less than about 10%, or less than about 5% difference, either greater or lesser, than the swell exhibited by the sealing element.
In one aspect, the sensor of the disclosure has a lateral resolution from at least about 100 μm, at least about 500 μm, at least about 500 μm, or at least about 1,000 μm. In another aspect, the sensor of the disclosure has a lateral resolution of at least about 1 cm, at least about 10 cm, at least about 100 cm, or at least about 1 m. Herein, lateral resolution means the minimum distance over which the sensor is operable to make spatially independent measurements of a force or pressure applied thereto. For example, a sensor with a lateral resolution of at least about 100 cm can distinguish between the force or pressure applied to the piezoresistive composition at points separated by at least about 100 cm, and to make independent determinations thereof.
In certain aspects, the sensor of the disclosure can detect or measure a force applied thereto by a sealing element of at least about 100 N, at least about 200 N, at least about 500 N, at least about 750 N, at least about 1,000 N, or at least about 1,250 N. In further embodiments, the disclosed sensors can measure the pressure applied thereto by a sealing element of at least about 100 N cm−2, at least about 200 N cm−2, at least about 500 N cm−2, at least about 1,000 N cm−2, or at least about 1250 N cm−2.
The disclosure further provides for peripheral electronics to communicate with the sensor, to gather and transmit data, and to apply software based algorithms to the data to result in a user readable or actionable information format.
In certain aspects, the sensor or more than one sensor are able to provide a two-dimensional or three-dimensional representation of force applied thereto by a sealing element or sealing elements. In a further aspect, the information derived from the sensor is useful to suggest design changes to the sealing element, to the housing, apparatus, or tool comprising the sealing element, or to the means of activating, engaging, or setting the sealing element. In one embodiment, sensor of the disclosure transmits data wirelessly to a remote central data station for further processing. In certain aspects, the wireless transmission is by means of radio frequency transmission, or by other electromagnetic frequencies, for example in the Gigahertz range.
In various aspects, the disclosed sensor can operate a range of temperatures of from about 0° C. to about 300° C.
Without limitation, disclosed herein are the following:
An apparatus for forming a seal in a wellbore, comprising:
a) one or more expandable sealing elements; and
b) at least one sensor;
wherein at least about 0.1% by weight of the sensor comprises a piezoresistive composition.
An apparatus for forming a seal in a wellbore, comprising:
An apparatus for forming a seal in a wellbore, comprising:
An apparatus for forming a seal in a wellbore, comprising:
An apparatus for forming a seal in a wellbore, comprising:
As described herein, the apparatus can be configured for use as a packer in a subterranean wellbore. When configured as a packer, for example, in
In one aspect, the disclosed packer can comprise anti-extrusion devices disposed immediately above and below the apparatus.
Further disclosed herein is a packer assembly that can comprise a disclosed apparatus that can be inserted into a wellbore independently of a conduit, i.e., the apparatus is slid down the wellbore and hence prior to activation as described herein is “slidably” attached to the wellbore wall.
The apparatus depicted in
The apparatuses depicted in
In one embodiment, the sleeve can comprise a continuous opening or slit vertically along one side to facilitate expansion onto the inner wall of the wellbore when the sealing element expands. In another embodiment, the sleeve comprises a composite material or polymer which is capable of expanding outward to the surface of the wellbore,
When more than one apparatus is intended for use, the sensor, i.e., the piezoresistive composition can be applied either continuously over the outside surface of the conduit, or cuts or breaks in the piezoresistive material can be made to isolate sections of the sensor. In this manner, when the user is faced with isolating segments of the annulus that exists between the wellbore and the conduit, the change in resistivity that is detected along any segment of the conduit will provide the user with information regarding the location of the wellbore seal that has formed.
In one configuration of the disclosed apparatus for use as a packer, a disclosed sensor is disposed along at least a portion of the conduit between the sealing element and the conduit. Packers in this configuration can be prepared as follows:
Similar processes are suitable for preparing packers wherein in the sensor is disposed in alternative arrangements as described herein, with suitable alteration in sequence of steps or placement of components; these variations are within the scope of the present disclosure.
In one aspect, the sensor comprising the disclosed packer is capable of providing an on/off signal, or binary signal, i.e., whether a certain pre-determined amount of swell has been achieved or not, or whether a pre-determined amount of force exerted by the sealing element against a mandrel or a sealing surface has been achieved or not. In other aspects, the sensor is able to quantify the amount of swell in the sealing element, the amount of force exerted by the sealing element against the mandrel or a sealing surface, or both. In an aspect wherein more than one sensor (i.e. multiple sensors) are associated with a sealing element, the sensors can measure the swell at different locations or regions of the sealing element. In this manner, an expandion profile can be determined that describes the swell across vertical, horizontal, or azimuthal dimensions of the sealing element. For example, one can determine whether the distal portions of a sealing element are expanding faster than the central portion of a sealing element. In another aspect, the multiple sensors can provide a three dimensional force map, wherein two dimensions are X and Y coordinates of a surface of the sealing element, and the third dimension is the force applied by the sealing element against the mandrel or a sealing surface. In various aspects wherein multiple sensors are associated with a sealing element, the positioning of the sensors in relation to one another can be of any desired relation. For example, the sensors can be arranged in a series, or in an array, wherein the number of sensors comprising the series or array is determined by the desired measurement footprint. The spacing of sensors can likewise be any desired spacing, whereby the spacing is determined by the desired lateral resolution of feedback. For example, a series of three sensors can be positioned with one sensor near the top, one sensor near the bottom, and one sensor near the middle of a sealing element, such as is depicted in
In a further aspect, the disclosed packer is able to provide continuous monitoring of the swell state or expansion state of the sealing element. Likewise, the disclosed packer is able to provide continuous monitoring of the force exerted by the expandable sealing element against a mandrel or a sealing surface. In some cases, changes in fluid composition encountered by a sealing element in a subterranean wellbore over time can cause a change in the swell state of the sealing element. For example, a packer comprising an oil expandable sealing element can encounter a high water content fluid at a time after placement in the wellbore, causing a retraction of the sealing element and thereby reduction in or loss of the seal against the sealing surface. Changes in other conditions in the subterranean wellbore can likewise affect the swell state of the sealing element, such as a change in temperature. In any case, it is useful for an operator to be aware of the swell state of the sealing element at various points in time. Furthermore, physical processes common to crosslinked polymer systems that commonly comprise sealing elements, such as stress relaxation, can cause a reduction in the force applied by the sealing element against the mandrel or a sealing surface or both. The presently disclosed packer is able to monitor the effect of these physical changes as well.
In a further aspect, the packer can further comprise an additional layer disposed about the outer diameter of the sealing element, comprising a delay barrier. The delay barrier serves to delay, or inhibit expanding of the sealing element for a period of time, giving time to convey the packer to a desired location or depth within the wellbore. Accordingly, the swell properties of the delay barrier are different from the swell properties of the sealing element. In some aspects, the delay barrier dissolves or otherwise disintegrates over time in the wellbore, further exposing the sealing element to a triggering medium. Additionally, the delay barrier can protect the sealing element from physical damage during transport, storage, or conveyance to a desired location within the wellbore.
The disclosed packer can communicate information from the disclosed sensor or sensors to a location remote from the sensor or sensors via methods known in the art. Non-limiting examples are mud pulse telemetry, electromagnetic telemetry, wireless transmission, or wired pipe.
Further disclosed herein are methods for sealing in a subterranean wellbore, forming a seal in a subterranean wellbore, or for closing a subterranean wellbore to create one or more cavities.
The disclosed method comprises:
As shown in
Disclosed is a method for forming a seal in a wellbore, comprising inserting into a wellbore an apparatus comprising:
Also disclosed is a method for forming a seal in a wellbore, comprising inserting into a wellbore a sleeve comprising:
inserting into the wellbore a conduit, and causing the one or more sealing elements to expand thereby forming a seal.
Further disclosed is a method for forming a seal in a wellbore, comprising inserting into a wellbore a sleeve comprising one or more expandable sealing elements, and inserting into the wellbore a conduit having deposited circumferentially thereon at least one sensor containing at least about 0.1% by weight of a piezoresistive composition, and causing the one or more sealing elements to expand thereby forming a seal
In another aspect, the disclosure provides a method for sealing in a subterranean wellbore comprising:
The disclosed systems can be operated according to the following example.
An apparatus 900 was assembled as depicted in
The resulting data are shown in
An apparatus 1200 was constructed as depicted in
While particular embodiments of the present disclosure have been illustrated and described, it would be obvious to those skilled in the art that various other changes and modifications can be made without departing from the spirit and scope of the disclosure. It is therefore intended to cover in the appended claims all such changes and modifications that are within the scope of this disclosure.
This application claims priority to U.S. Provisional Application 61/494,378, filed Jun. 7, 2011, to U.S. Provisional Application 61/546,767, filed Oct. 13, 2011, and to U.S. Provisional Application 61/615,392, filed Mar. 26, 2012, all of which are incorporated herein in their entirety.
Number | Date | Country | |
---|---|---|---|
61615392 | Mar 2012 | US | |
61546767 | Oct 2011 | US | |
61494378 | Jun 2011 | US |