The present disclosure relates to a heat sealing apparatus including an insulator sealing head assembly, and a method for manufacturing an insulator sealing head assembly.
The packaging industry, specifically, the food packaging industry has been improving upon and creating shallower food trays in order to best display the food product when packaged and create a vision of a fuller package from the consumer's perspective. The use of a shallower food tray also reduces the amount of packaging materials used.
The food packaging industry has also been improving upon and creating new innovative lidding/sealing materials (or film) for use with the food trays in order to better improve the overall package appearance to the consumer. Food packaging is known to affect product sales to consumers, and excellent visual presentation may be a key factor in increasing product sales. Food packaged in conventional trays and seals may discolor when the food comes into contact with the sealing material. Industry has long used modified atmospheric packaging (MAP), a process used to prolong the shelf life of unprocessed foods. In MAP, the air surrounding the food product in the tray is evacuated and replaced with a modified gas mixture. If the atmosphere in the food packaging is not properly maintained, it can discolor the food product or create a cloudy appearance, making the food product visually unappealing.
Some of the new specialty films being developed for these purposes include multilayer films, such as the Cryovac Miribella® film. However, multilayer film requires specialized tools to properly cut and shape the sealing material since the film consists of at least two layers which must be shrink-wrapped to seal the food tray. The temperature during the sealing process as well as the shape of the sealing tool will affect the overall presentation of the sealed package. If all of the layers of the film are not heated properly, the sealed package may appear to have film creases, blemishes, streaks or other visible flaws, making the food product visually unappealing.
A need exists for a heat sealing apparatus, including an insulator sealing head assembly that can properly and most efficiently handle, cut and shape the specialty films being used on food packaging while maintaining the proper atmospheric conditions in the food packing.
The present disclosure relates to a heat sealing apparatus including an insulator sealing head assembly, and a process for manufacturing an insulator sealing head assembly. The insulator seal head assembly is specifically designed to accommodate specialty films, such as multilayer films, used to seal food containers. The insulators in the insulator sealing head assembly may be constructed from various materials including polytetrafluoroethylene (PTFE), polyphenylsulfone (PPSU) such as Radel® and Radel R®, G10 fiberglass laminate, silicone sheets or foam, Synform™, ceramics, polyether ether ketone (PEEK), Ultem®, Fluorosint®, polysulfone (PSU), polyetherimide (PEI), and other insulator-type materials, that are food-approved, readily-machined, smooth, and stable at high temperatures.
The disclosure may be used with, e.g., the systems described in U.S. Published Patent Application 2011/0072764 A1 by inventors V. Michael Daniek, et al., which discloses an apparatus, a system and a method for sealing containers and which is incorporated herein by reference in its entirety. The present disclosure may be implemented with the apparatus, system, and method described in the published application to effectively seal containers with specialty film, such as multilayer film, including the Cryovac Miribella® film.
According to an aspect of the disclosure, a heat sealing apparatus may be configured to receive a container and may seal the container with a lidding such as multilayer film. The apparatus may comprise of at least one container cavity to hold at least one container, and an insulator sealing head assembly configured to seal at least one container with a lidding, such as multilayer film. The insulator sealing head assembly may comprise: a tray insulator; a seal bar insulator; a seal bar containing at least one heat element; a seal bar arm; and a seal bar arm support. The insulator seal head assembly may comprise a dome shape.
The insulator sealing head assembly may be configured such that the seal bar insulator can be located between the seal bar on one side and the tray insulator on the other side. The tray side of the tray insulator may be designed to conform to the shape of the tray being sealed. The tray insulator may comprise of a domed shape, a circular shape, a square shape, a rectangular shape, an elliptical shape, a pyramid shape, a triangular shape, or the like.
The tray insulator may comprise a material that is made from at least one of: polyphenylsulfone (PPSU) such as Radel® or Radel R®, polytetrafluoroethylenes (PTFE), G10 fiberglass laminate, silicone sheets or silicone foam, Synform®, ceramics, polyether ether ketone (PEEK), Ultem®, Fluorosint®, polysulfone (PSU), polyetherimide (PEI), or combinations thereof.
The material used as the tray insulator may have a preferred thermal conductivity between about 2.2 to about 2.8 BTU-inch/hr-ft2-° F., a glass transition temperature rating of at least about 415° F., and a continuous operation temperature rating of at least about 285° F. The preferred shape and material for the tray insulator is domed shaped comprising of Radel® or Radel R®.
The seal bar insulator may include at least one of: a silicone sheet, silicone foam, polyphenylsulfone (PPSU) such as Radel® or Radel R®, polytetrafluoroethylenes (PTFE), G10 fiberglass laminate, Synform®, ceramics, polyether ether ketone (PEEK), Ultem®, Fluorosint®, polysulfone (PSU), polyetherimide (PEI), or combinations thereof. The seal bar insulator may comprise a rectangular shape or other geometries as available or machined, with a length of about ½ inches to about 48 inches, a width of about ½ inches to about 36 inches and depth or thickness of about up to 6 inches. The preferred materials for the seal bar insulator is silicone sheet or silicone foam.
The material used to form the seal bar may comprise, e.g., aluminum, aluminum alloy, tin, lead, cast iron, steel, or combinations thereof. The seal bar contains at least one heat element in contact with the seal bar. The heat element(s) may be constructed of metal or other materials that are useful for heat transfer and may be heated using, e.g., electricity, or other known means in the industry.
The seal bar may be heated by at least one heat element that heats the surface of the seal bar, where the seal bar comes into contact with the multilayer film and/or container. The tray insulator's surface may be maintained at a temperature ranging from, e.g., about 40° C. to about 80° C., and preferably around 60° C.
The tray insulator and seal bar insulator may be secured to the seal bar from the tray side with at least one, but preferably a plurality of fasteners, which may include, e.g., a screw, a nut, a bolt, a clip, a clamp, a pin, a rod, an adhesive, a welding, a tongue and groove combination, a hook and loop fastener, a lip, or the like. Alternatively, the tray insulator and seal bar insulator may be secured to one or more side walls of the seal bar using the above-mentioned fasteners. The method of mounting the insulators to the seal bar may comprise mounting and securing the insulators from the tray side. Alternatively, the insulators may be secured from the sides of the seal bar, which may result in a smoother machined domed surface that may not be disturbed with countersunk holes to secure it in position.
The tray insulator may comprise one or more vacuum or modified atmosphere packaging (MAP) vacuum portholes and pathways to evacuate atmospheric air from the sealed container, and to insert modified atmospheric gas. The vacuum or MAP portholes/pathways may be provided on at least the back side of the tray insulator. The vacuum portholes may also run throughout the seal bar insulator and the seal bar.
The seal bar may comprise a cutter, which may include a heating element. The cutter may be located at the ends of the seal bar. The heating element may come into contact with the multilayer film and/or container. The cutter may be shaped to cut the film and seal the container or surround the container with the film.
The cutter may include a knife. The knife may comprise a heated, unheated, or cooled knife blade. The knife blade may be attached to the seal bar to cut the film and/or a portion of the container. The knife blade may comprise a smooth edge, a serrated edge or combinations thereof.
According to a further aspect of the disclosure, a process for manufacturing an insulator sealing head assembly is also disclosed. The process may comprise: providing a mold for a seal bar, pouring or injecting into the mold a seal bar material, curing the mold for a predetermined period of time, removing the seal bar from the mold, providing a mold for a seal bar insulator, pouring or injecting into the mold a seal bar insulator material, curing the mold for a predetermined period of time, removing the seal bar insulator from the mold, providing a mold for a tray insulator, pouring or injecting into the mold a tray insulator material, curing the mold for a predetermined period of time, removing the tray insulator from the mold, positioning the seal bar insulator and tray insulator to the seal bar, and securing the seal bar insulator and tray insulator to the seal bar. The process may further comprise positioning a knife blade to the seal bar, and securing the knife blade to the seal bar.
The process for making a seal bar, seal bar insulator and tray insulator may occur concurrently or sequentially as described above. In addition, the process may be manual, or a computer readable medium that comprises a computer program that, when executed on a computer, may control the entire process as described above or certain aspects of the process.
The disclosed insulator sealing head assembly may be provided with new tray sealer machines, or may be provided as an adaptable module to existing tray sealer machines. This disclosure may readily be adapted for use with existing tray sealing machines, including, e.g., the Ross Inpack™ Junior, Inpack™ Junior Automatic, and the Inpack™ S Series, and may be used specifically with specialty films, including Cryovac Mirabella® film.
Additional benefits of the disclosed insulator sealing head assembly include a better temperature controlled environment and improved sealed package appearance. The disclosed invention is better equipped to handle specialty films such as multilayer films, and can create a smooth domed surface film which can be properly supported while being applied to the tray, and properly supported as the package is evacuated of air and modified atmospheric gas inserted, thereby creating a wrinkle-free and blemish-free seal. Also, the disclosure of a knife blade with heated serrated edges can improve the cutting capabilities and reduce fraying or stretching of the film, thereby increasing the sealed package appearance.
Additional features, advantages, and embodiments of the disclosure may be set forth or apparent from consideration of the detailed description and drawings. Moreover, it is to be understood that the foregoing summary of the disclosure and the following detailed description and drawings are exemplary and intended to provide further explanation without limiting the scope of the disclosure as claimed.
The accompanying drawings, which are included to provide a further understanding of the disclosure, are incorporated in and constitute a part of this specification, illustrate embodiments of the disclosure and together with the detailed description serve to explain the principles of the disclosure. No attempt is made to show structural details of the disclosure in more detail than may be necessary for a fundamental understanding of the disclosure and the various ways in which it may be practiced. In the drawings:
The present disclosure is further described in the detailed description that follows.
The disclosure and the various features and advantageous details thereof are explained more fully with reference to the non-limiting embodiment and example that is described and/or illustrated in the accompanying drawings and detailed in the following description. It should be noted that the features illustrated in the drawings are not necessarily drawn to scale, and features of one embodiment may be employed with other embodiments as the skilled artisan would recognize, even if not explicitly stated herein. Descriptions of well-known components and processing techniques may be omitted so as to not unnecessarily obscure the embodiments of the disclosure. The example used herein is intended merely to facilitate an understanding of ways in which the disclosure may be practiced and to further enable those of skill in the art to practice the embodiments of the disclosure. Accordingly, the example and embodiment herein should not be construed as limiting the scope of the disclosure. Moreover, it is noted that like reference numerals represent similar parts throughout the several views of the drawings.
A “computer”, as used in this disclosure, means any machine, device, circuit, component, or module, or any system of machines, devices, circuits, components, modules, or the like, which are capable of manipulating data according to one or more instructions, such as, for example, without limitation, a processor, a microprocessor, a central processing unit, a general purpose computer, a super computer, a personal computer, a laptop computer, a palmtop computer, a notebook computer, a desktop computer, a workstation computer, a server, or the like, or an array of processors, microprocessors, central processing units, general purpose computers, super computers, personal computers, laptop computers, palmtop computers, notebook computers, desktop computers, workstation computers, servers, or the like.
A “computer-readable medium”, as used in this disclosure, means any medium that participates in providing data (for example, instructions) which may be read by a computer. Such a medium may take many forms, including non-volatile media, volatile media, and transmission media. Non-volatile media may include, for example, optical or magnetic disks and other persistent memory. Volatile media may include dynamic random access memory (DRAM). Transmission media may include coaxial cables, copper wire and fiber optics, including the wires that comprise a system bus coupled to the processor. Transmission media may include or convey acoustic waves, light waves and electromagnetic emissions, such as those generated during radio frequency (RF) and infrared (IR) data communications. Common forms of computer-readable media include, for example, a floppy disk, a flexible disk, hard disk, magnetic tape, any other magnetic medium, a CD-ROM, DVD, any other optical medium, punch cards, paper tape, any other physical medium with patterns of holes, a RAM, a PROM, an EPROM, a FLASH-EEPROM, any other memory chip or cartridge, a carrier wave as described hereinafter, or any other medium from which a computer can read.
Various forms of computer readable media may be involved in carrying sequences of instructions to a computer. For example, sequences of instruction (i) may be delivered from a RAM to a processor, (ii) may be carried over a wireless transmission medium, and/or (iii) may be formatted according to numerous formats, standards or protocols, including, for example, WiFi, WiMAX, IEEE 802.11, DECT, 0G, 1G, 2G, 3G or 4G cellular standards, Bluetooth, or the like.
The terms “including”, “comprising” and variations thereof, as used in this disclosure, mean “including, but not limited to”, unless expressly specified otherwise.
The terms “a”, “an”, and “the”, as used in this disclosure, means “one or more”, unless expressly specified otherwise.
Although process steps, method steps, algorithms, or the like, may be described in a sequential order, such processes, methods and algorithms may be configured to work in alternate orders. In other words, any sequence or order of steps that may be described does not necessarily indicate a requirement that the steps be performed in that order. The steps of the processes, methods or algorithms described herein may be performed in any order practical. Further, some steps may be performed simultaneously.
When a single device or article is described herein, it will be readily apparent that more than one device or article may be used in place of a single device or article. Similarly, where more than one device or article is described herein, it will be readily apparent that a single device or article may be used in place of the more than one device or article. The functionality or the features of a device may be alternatively embodied by one or more other devices which are not explicitly described as having such functionality or features.
Referring to
The seal bar arm 270 may be attached to the seal bar 210 using a seal bar arm support 280. The seal bar 210 and seal bar arm 270 may be constructed of aluminum, aluminum alloy, tin, lead, cast iron, steel, or combinations thereof. The insulator sealing head assembly 200 may be operated by manual, pneumatic, hydraulic, or electronic means by pushing the seal bar arm 270 down and pressing the insulator sealing head assembly 200 onto the multilayer film 400 until the film is in contact with the tray located in the container cavity 300 and the film 400 seals to the tray along the heating element edge 230.
Referring to
Referring to
The tray insulator 250 and seal bar insulator 240 comprise the composite insulator configuration designed to isolate the multilayer film 400 or other lidding from the seal bar heating elements 230 in order to best deliver a controlled temperature environment that supports and shapes the multilayer film 400 or other lidding as it is sealed to the tray. The seal bar insulator 240 is preferably entirely constructed of silicone foam or silicone sheets, but may be constructed of silicone rubber, or any other insulating material.
The ideal tray insulator material would be readily moldable via machine, food use approved, and produce ideal film sealing conditions, causing a steady state heat flow rate throughout the composite insulator configuration, as calculated by Fourier's heat transfer equation:
Q=k*A*(ΔT/d)
The ideal tray insulator 250 material has a thermal conductivity between about 2.2 to about 2.8 BTU-inch/hr-ft2-° F., a glass transition temperature rating of about 415° F. or greater, and a continuous operation temperature rating of about 285° F. or greater. The tray insulator 250 may be entirely constructed of polyphenylsulfone (PPSU), commercially known as Radel® and Radel R®. Radel R®, or other impact resistant thermoplastic material that can deliver the ideal sealing conditions described above, and that is readily moldable and food use approved.
The thickness of the Radel R® insulator (dI2) to be used may be calculated using Fourier's equation where all the other variable are known:
The surface temperature of the tray insulator 260 and heating element 230 may be a temperature ranging from about 40° C. to about 80° C., and preferably around 60° C. It is noted that surface temperature may include temperatures that are lower than 40° C., or greater than 80° C.
Referring to
In an alternative embodiment, the insulation system 240, 250 may be secured to the seal bar 210, with at least one fastener 251, e.g., four fasteners, one on each side. A side mount fastening method for the insulators 240, 250 may provide a smoother machined domed surface, smoother film surface contact transitions, isolation from the inside cavity surfaces of the seal bar 210 and may eliminate the need for countersunk holes to secure the insulators 240, 250 into position, thereby providing a simpler total assembly. The fastener(s) 251 may be constructed and positioned along the sealing head assembly using techniques known by those having ordinary skill in the art.
The seal bar 210 may include a cutter portion (cutter), which may include a heating element edge 230 that may be used to seal and cut the film onto (or around or in) the tray. Alternatively, the seal bar 210 may incorporate a knife blade 600 into its design to improve the cutting experience on, e.g., the specialty films.
Referring to
Referring to
Referring to
The seal bar process 700 may begin by providing a mold for the seal bar 210 to a particular location in, e.g., a manufacturing facility (Step 710). A seal bar material, preferably aluminum, may be poured or injected into the mold (Step 720) and cured for a predetermined period of time (Step 730). The seal bar 210 may then be removed from the mold (Step 740). The process 700 may further comprise inspecting the resultant seal bar for faults or defects (Step 750) and either approving or rejecting the seal bar (Step 760).
The seal bar insulator process 800 may begin by providing a mold for the seal bar insulator 240 to a particular location in, e.g., a manufacturing facility (Step 810). A seal bar insulator material, preferably silicone foam, may be poured or injected into the mold (Step 820) and cured for a predetermined period of time (Step 830). The seal bar insulator 240 may then be removed from the mold (Step 840). The process 800 may further comprise inspecting the resultant seal bar insulator for faults or defects (Step 850) and either approving or rejecting the seal bar insulator (Step 860).
The tray insulator process 900 may begin by providing a mold or cast blanks for the tray insulator 250 to a particular location in, e.g., a manufacturing facility (Step 910). Radius and smooth chordal geometry may be used to machine these cast blanks to achieve the desired shape, with the tray side shape preferably a domed shape. A tray insulator material, preferably Radel R®, may be poured or injected into the mold (Step 920) and cured for a predetermined period of time (Step 930). The tray insulator 240 may then be removed from the mold (Step 940). The process 900 may further comprise inspecting the resultant tray insulator for faults or defects (Step 950) and either approving or rejecting the tray insulator (Step 960).
The seal bar 210, seal bar insulator 240 and tray insulator 250 processes may be operated concurrently or sequentially. The seal bar insulator 240 and tray insulator 250 may then be positioned with the seal bar 210 (Step 1000) and secured together (Step 1100) by at least one fastener, preferably insulator fasteners 251.
The insulator sealing head assembly 200 process may further comprise positioning a knife blade 600 to the seal bar 210 and securing the knife blade 600 to the seal bar 210 via placement of fasteners in the fastener holes 612.
It is noted that the processes 700, 800, 900 shown in
While the disclosure has been described in terms of exemplary embodiments, those skilled in the art will recognize that the disclosure can be practiced with modifications in the spirit and scope of the appended claims. These examples are merely illustrative and are not meant to be an exhaustive list of all possible designs, embodiments, applications or modifications of the disclosure.
This application claims priority and the benefit thereof from a U.S. Provisional Application No. 61/409,439 filed on Nov. 2, 2010 and titled SEALING FILM AND METHOD FOR MAKING THE FILM, the entire contents of which are herein incorporated by reference in their entirety.
Number | Date | Country | |
---|---|---|---|
61409439 | Nov 2010 | US |