The invention relates to a sealing arrangement comprising at least one container and/or at least one container part, such as a closure cap that is placed on the container, wherein the inside of the container is used to accommodate a medium, in particular in the form of a fluid that is bottled in a sterile manner, which can be removed from the container by means of a removal device such as a syringe needle, to which end said removal device penetrates at least one sealing material, which sealing material is connected to the container and/or parts thereof. The invention also relates to a container to which such a sealing arrangement is allocated.
Containers that, in particular, contain a fluid that has been bottled in a sterile manner, which can he removed from said container by means of a cannula, for example a syringe needle or a mandrel, are widely used, particularly for medical applications, for example in the form of ampules or infusion bottles. In the case of medical applications, such containers, which are made out of plastic using the blow-fill-seal method or the known bottelpack® method, are especially suitable because the product is only in contact with a polymer. These containers therefore offer a high degree of protection against microbial contamination, even during long periods of storage under unfavorable environmental conditions. Plastic products of this kind have been disclosed, for example in U.S. Pat. No. 5,897,008 A or EP 2 269 558 A1. When the product is to be removed by means of an insertable cannula or an insertable mandrel, such containers are only suitable for a single use, since it is not possible to reseal said containers after an initial opening thereof, because the polyolefins used in such BFS containers are not nearly elastic enough to reliably seal the puncture site. In order to remedy this, it is known that insertion parts or stoppers made out of rubber can be used in BFS containers that are intended for medical purposes. As a result, on the one hand, the manufacturing process is made substantially more costly and is slowed by this insertion. In addition, it is necessary to sterilize the rubber parts before inserting them in order to maintain low bacterial levels in the product. There is a serious disadvantage in the fact that the product is in contact with the insertion part, even during the storage period. Document U.S. Pat. No. 5,467,878 A, EP 0 721 897 A1, DE 2 844 206 C2 and DE 2 327 553 A1 disclose containers having caps, which have a rubber insert, and which are pressed onto the container head and are fixedly connected to the neck of the bottle by means of a mechanical fixation. Since the rubber insert is pressed onto the flexible, thin container wall only by mechanical means, a gap always remains as a result of the design. Unwanted microbiological contamination, bacterial growth, fungus, etc. may easily arise in this space. This contamination can easily find its way into the container when the container head is pierced. In addition, fluid can be easily drawn in a suction process as a result of capillary action, and thus, may find its way into the space between the insert and the container head.
In order to avoid the problems associated with rubber inserts, a container of the above mentioned generic type is already known from EPO 364 783 A1, in which, rather than a rubber material, a sealing material made out of a thermoplastic elastomer (TPE) is fixedly applied to a cap, which, in turn, can be applied to the container head in such a way that the sealing material of the cap fits snuggly along the wall region of the container, which sealing material is provided as a puncture site. It is therefore not possible to reliably avoid a cavity or gap between the container head and the sealing material, and fluid may possibly be drawn in a suction process as a result of a capillary action created by a thin gap. In order to ensure the sterility of the contact surface of the container head and sealing material, an autoclave process is also necessary, to which the contents of the container are also subjected. As a result, such container systems are only suitable for thermally stable products that can withstand the high temperatures (ca. 115° C. to 132° C.) of an autoclave process.
Starting from this prior art, the object of the invention is to provide a sealing arrangement, which offers increased protection, as compared to the prior art, against microbial loads that could affect sterility.
This object is achieved according to the invention by a sealing arrangement having the features of claim 1 in its entirety.
As a result of the welded or bonded connection to the outside of the container or of a container part, such as a cap, it is possible to avoid the risk that a gap will form on the contact surface of the sealing material, as is the case in the corresponding solution in the prior art, in which the sealing material is pressed snuggly against the assigned contact surface by a contact pressure. It is thereby possible to avoid contamination as a result of bacterial migration due to capillary action along a gap.
The respective sealing material is preferably fixedly welded to the outer wall of the container without filler material and preferably free of adhesives.
In particular, the configuration may be advantageously such, that the respective sealing material rests directly on the outer wall, to which it can be assigned, with no spacing, and with the entire contact surface of said sealing material that faces the container or container part resting against the outer wall, to which it can be assigned.
In an especially advantageous manner, elastomers or plastics that can be bonded or welded may be used, wherein a thermoplastic elastomer (TPE) is preferably used as a sealing material.
In the case of containers that are produced by means of a blow, fill and seal method, the sealing material is preferably applied to the container after the production of said container has been completed.
The subject matter of the invention according to claim 6 is also a container made out of plastic, to which the sealing assembly according to one of the claims 1 to 5 is assigned, and in which the respective sealing material is disposed on the outside of the container or on a part thereof facing the environment, wherein the respective sealing material is fixedly connected to the outside of the container and/or to parts thereof facing the environment by means of a welded and/or adhesively bonded connection.
In a particularly advantageous manner in the case of the invention, a sealing material in the form of a disk-like body is connected to the outside of the container wall in a materially integrated bond, the inside of which is adjacent to a sealed container in order to receive the respective product that is to be bottled in a sterile manner. In the case of a plastic container and a thermoplastic sealing material, it is of particular advantage that such a connection in a materially integrated bond can be created by means of a thermal joining process, in which the two joining elements are welded at temperatures, which are adjusted according to the softening behavior of said materials, for example at temperatures in the range of 200° C., wherein both parts are preferably heated and then briefly pressed against one another. It is also possible to use corresponding friction-welded joints in order to connect the sealing material to the container or to parts thereof. In so doing, it is of particular advantage that the surfaces of the contact surface made out of thermoplastic sealing material and the container head both be simultaneously sterilized.
In particularly advantageous, exemplary embodiments, the container has a container head, which is connected to a main part of the container by means of a neck part, said container head having a wall section, which can be pierced for a removal procedure, wherein the sealing material is provided on the container head.
In a particularly advantageous manner, the configuration may be such that a protective film may be provided such that it rests detachably on the outside of the sealing arrangement. The protective film, which is to be removed prior to the first penetration, may serve as a seal of quality.
When the wall section of the container head that is connected to the body of the sealing material has a curvature that extends from the interior of the container directed outward, the outside of the body of the sealing material preferably has a similar curvature, so that the body of the sealing material is a continuation of the outer contour of the container head.
Alternatively, the outside of the body of the sealing material may have at least one recess, for example in the form of an annular space, which extends concentrically to a central, non-recessed region. Other contouring of the outside of the body of the laminate material may be provided, for example a trough-like depression in the actual area to be punctured.
In particularly advantageous exemplary embodiments, a plastic ring that laterally encloses the body of the sealing material may be provided, which ring is connected to the container head and/or to the main part of the container. A plastic ring of this kind can be cast or molded onto the container head and body of the sealing material. A plastic ring of this kind may also have a mechanically fixed connection to the container head, for example by means of a catch mechanism, welded joint or riveting.
The plastic ring may engage behind a radially projecting edge region on the container head as a catch mechanism.
In the case of exemplary embodiments, in which a shoulder is formed at the transition between the main part of the container and the container head, the plastic ring can overlap over the container head in the manner of a cap and can be connected to the shoulder.
In particularly advantageous exemplary embodiments, the configuration is such that the cap-like plastic ring forms an enclosure for the body of the sealing material in the form of a cylinder, which projects axially outward beyond the body. The cylinder wall of a cylinder of this kind may form a connection region for a removal adapter such as are known from EP 1 847 242 A1, for example, and which provide a mechanism for piercing or opening the container.
In a particularly advantageous manner, the outer end of a cylinder of this kind may also have a cover formed thereon, thereby forming at least one predetermined breaking point, on which cover, in turn, a tab is formed as an integral part, which makes it possible to separate the cover at the respective predetermined breaking point.
According to claim 17, the subject matter of the invention is also a sealing material for a sealing arrangement according to one of the claims 1 to 5, which comprises elastomers or plastics that can be bonded or welded, wherein, in particular, a thermoplastic elastomer (TPE) is provided, and wherein the sealing material may be formed by a block-shaped or disk-shaped body. A block-shaped sealing material of this kind may also be produced separately from the container and be made available for when the container is used, for example in a form such that a corresponding block is included when packaging the finished and filled container, so that a user can apply the block of sealing material, for example through the use of an adhesive bond with a plastic material. If the block of sealing material can be used by means of a releasable, adhesively bonded connection to the respective container, it would also be possible to combine a pack of ampules, for example having six container-shaped ampules, in a putty, having only one block of sealing material, which may then be placed on the respective ampule over the detachable, adhesively bonded connection for a removal procedure, and then after the use of this ampule container, said block of sealing material may again be placed on the subsequent ampule for another removal procedure after having been removed from the preceding container.
According to claim 20, the subject matter of the invention is also a method for producing a container according to one of the claims 6 to 16.
In the case of the method according to the invention, when a sealing material is used, which contains an antimicrobial additive, the outer surface of the sealing material may also be kept in a low-germ state over an extended period. This provides the additional advantage that the puncture site of the sealing material need not be disinfected prior to the insertion of the mandrel or cannula.
The invention is described in greater detail below on the basis of exemplary embodiments depicted in the Figures. Shown are:
The invention is explained below on the basis of exemplary embodiments of containers, such as those which can be used as infusion bottles or, having smaller dimensions, as ampules, for example, for the removal of the product by directly inserting an injection cannula. When using an infusion bottle, an insertion mandrel may he provided in order to remove the product. The containers are produced out of a plastic material, which is suitable for the known blow-fill-seal method, for example in accordance with the known bottelpack® system, thus made out of a polyolefin such as a polyethylene having a lower or higher density, or polypropylene.
The second exemplary embodiment from
The third exemplary embodiment from
The fourth exemplary embodiment according to
In the case of the seventh exemplary embodiment shown in
In the case of the exemplary embodiment from
The tenth exemplary embodiment from
In order to obtain a low-germ surface, an antimicrobial additive may be added to the sealing material of the body 9 during production, for example With Stand® from Poly One or HP 7A 4000 AM from Gabriel Chemie. This has the advantage that the puncture site on the body 9 no longer needs to be disinfected prior to piercing said site by means of a mandrel or cannula.
Number | Date | Country | Kind |
---|---|---|---|
10 2012 021 525.8 | Oct 2012 | DE | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2013/002730 | 9/11/2013 | WO | 00 |