The present invention relates generally to a baffling, sealing, or reinforcement member that includes a composite structure and one or more fasteners.
The transportation industry continues to require methods of baffling, reinforcement and sealing that provide improved functionality while simultaneously providing reduced weight and cost. Often, when attempting to reduce the weight of a part providing baffling, reinforcement, and/or sealing, the lightweight nature of the support material does not provide the necessary strength for effective baffling, reinforcement and sealing. Thus, reduced functionality often accompanies lightweight sealing, reinforcement and baffling mechanisms. For example, sufficient rigidity and strength are required to prevent a sealing, reinforcement, and/or baffling system from sagging or becoming dislodged from an intended position and thereby failing to effectively seal or baffle. As a result, efforts to reduce part weight often produce weakened sealing, reinforcement, and/or baffling assemblies that are easily dislodged and fail to sufficiently seal, reinforce, and/or baffle. There is thus a need in the art of sealing for low weight sealing, reinforcement, and baffling assemblies that avoid sag and disengagement from a location within a cavity.
In a first aspect the present invention contemplates a sealing device for a cavity comprising a sealing body having a first material layer, a second material layer, and one or more fasteners attached to or integrally formed with the first material layer, the second material layer, or both. The sealing body may have a constant thickness that extends from one edge of the sealing body to an opposing edge of the sealing body. The first material layer may have a constant thickness. The first material layer may have a variable thickness. The second material layer may include an expandable material that is bonded to the first material layer. The expandable material may have a lower rigidity than the first material layer but a higher yield strength than the first material layer. The one or more fasteners may be separately formed from the sealing body or integrally formed with the sealing body. The one or more fasteners may include a first portion for attaching the sealing body to a cavity wall. The one or more fasteners may include a second portion interconnected to the first portion for attaching the fastener to the sealing body. The first portion may project substantially laterally outward from the plane of the sealing body. The one or more fasteners may be configured so that when located within a cavity, the sealing body projects substantially rigidly away from a cavity wall in a predetermined configuration. The perimeter of the sealing body may be generally shaped to fit within the cross-section of a cavity for sealing, having a profile substantially similar to that of the cavity. The sealing body may be deformable and yet still retain its shape by virtue of the first material layer. The first material layer may also allow the sealing body to resist sagging under its own weight at a temperature to at least above 250° F.
In a second aspect of the present invention, there is contemplated a method for sealing a cavity comprising providing a substantially planar sealing body. The sealing body is provided by bonding a first material layer to a second material layer. The second material layer may be an expandable material having a lower rigidity than the first material layer but a higher yield strength than the first material layer after cure. The sealing method further includes attaching one or more fasteners to the sealing body or forming one or more integrally formed fasteners on the sealing body. In attaching and/or forming the one or more fasteners, a first portion of the fastener may be attached to a cavity wall and a second portion of the fastener may be attached to the sealing body. The first portion and second portion of the one or more fasteners may be interconnected with one another and/or integrally formed as one fastener. The second portion of the one or more fasteners may be attached to or integrally formed with the first material layer, the second material layer, or both. One or more openings may be formed in the first material layer, the second material layer, or both. The one or more openings may be formed for attaching the one or more fasteners. The sealing body may be arranged within the cavity so that the sealing body projects substantially rigidly away from a cavity wall in a predetermined configuration.
The invention herein contemplates a device and method for the sealing of cavities with a deformable composite sealing body having one or more fasteners for locating and/or fastening the sealing body within a cavity. The sealing device disclosed herein may allow for effective baffling and/or sealing of a cavity with a lightweight composite structure that resists sag and unwanted movement within the cavity.
The present invention allows for improved baffling, reinforcement, and sealing of a cavity with a lightweight composite sealing device. The sealing device disclosed herein may include a first material layer bonded to a second material layer and one or more separately attached or integrally formed fasteners for securing the sealing assembly within a cavity. One or more of the first and second material layers may impart localized stiffening to the sealing device while also allowing the sealing device to flex. The flexible nature of the sealing device prevents permanent deformation of the device if it is deformed during installation or use. The localized stiffening provides a spring-like function so that the sealing device returns to its original shape after temporary deformation. The flexible nature of the sealing device also permits the device to be located within a cavity in a flexed position so that a sealing device that is initially planar is flexed and placed within a cavity in a non-planar form. Thus, a planar, two-dimensional sealing device can be flexed to a three dimensional form upon placement within a cavity. The fasteners may be attached to or integrally formed with the first material layer, the second material layer, or both. The fasteners may further prevent rotation of the sealing device once installed into a cavity.
As shown for example in
An additional embodiment having integrally formed cut-out fasteners is shown at
The size and shape of the sealing device may depend upon the desired location of the device within a cavity. As shown in
As discussed above, the size of the sealing device may depend upon the size of the cavity in which the sealing device is located. The thickness of the sealing device may be at least about 0.1 mm. The thickness of the sealing device may be less than about 10 mm. The thickness of the sealing device may be from about 0.5 mm to about 6 mm. The thickness of the first material layer may be less than the thickness of the expandable material layer. The thickness of the first material layer may be greater than the thickness of the expandable material layer. The thickness of the first material layer may be at least about 0.01 mm. The thickness of the first material layer may be less than about 8 mm. The thickness of the first material layer may be from about 0.2 mm to about 5 mm. The thickness of the expandable material layer may be at least about 0.01 mm. The thickness of the expandable material layer may be less than about 8 mm. The thickness of the expandable material layer may be from about 0.2 mm to about 5 mm.
The sealing device may include one or more openings, as shown for example in
The first material layer may comprise a flat metal sheet. The first material layer may be a high strength to weight metal, such as aluminum, titanium, magnesium or any combination thereof. The first material layer may comprise a steel material (e.g., a carbon steel). The first material layer may also be made of a sheet molding compound or bulk molding compound such as that described in U.S. Pat. No. 7,313,865 incorporated by reference herein for all purposes. The first material layer may also include a mesh material. The first material layer may include a variety of other materials such as polymers, elastomers, fibrous materials (e.g., cloth or woven materials), thermoplastics, plastics, nylon, and combinations thereof. The first material layer of multiple sealing devices may be fabricated from a common sheet of material (e.g., shim steel) to help avoid waste. The first material layer may be flexible to allow for bending of the sealing device to fit within desired small spaces of a cavity.
After placement of the sealing device into a cavity, the expandable material may expand according to a predetermined set of conditions. For example, exposure to certain levels of heat may cause the expandable material to expand.
The expandable material layer may be generally dry to the touch or tacky and may be shaped in any form of desired pattern, placement, or thickness, but is preferably of substantially uniform thickness. Though other heat-activated materials are possible for the expandable material layer, a preferred heat activated material is an expandable polymer or plastic, and preferably one that is foamable. The expandable material layer may be a relatively high expansion foam having a polymeric formulation that includes one or more of an epoxy resin, an acetate (e.g. ethylene vinyl acetate), a thermoplastic polyether, an acrylate and/or a methacrylate (e.g., a copolymer of butyl acrylate and methyl acrylate), an epoxy/elastomer adduct, and one or more fillers (e.g., a clay filler, and/or a nanoparticle-containing filler). Preferred thermally expandable materials are disclosed in U.S. Pat. Nos. 7,313,865; 7,125,461; and 7,199,165 incorporated by reference herein for all purposes. For example, and without limitation, the foam may also be an EVA/rubber based material, including an ethylene copolymer or terpolymer that may possess an alpha-olefin. As a copolymer or terpolymer, the polymer is composed of two or three different monomers, i.e., small molecules with high chemical reactivity that are capable of linking up with similar molecules. Suitable expandable materials include those available from L&L Products, Inc. under the designations L7220, L2821, L1066, L205, L2010, L2105, L2108A, L2806, L2811, L4200, L4141, L4161, L4315, L5510, L5520, L5540, L5600, L5601, L7102, and L7104. The expandable material layer may be die cut extruded sheets of material. It may be co-extruded with the first material layer.
A number of baffling or sealing foams may also be used for the expandable material layer. A typical foam includes a polymeric base material, such as one or more ethylene-based polymers which, when compounded with appropriate ingredients (typically a blowing and curing agent), will expand and cure in a reliable and predictable manner upon the application of heat or the occurrence of a particular condition. From a chemical standpoint for a thermally-activated material, the foam is usually initially processed as a flowable material before curing, and upon curing, the material will typically cross-link making the material incapable of further flow.
The expandable material can be formed of other materials provided that the material selected is heat-activated or otherwise activated by an ambient condition (e.g. moisture, pressure, time or the like) and cures under appropriate conditions for the selected application. One such material is the epoxy based resin disclosed in U.S. Pat. No. 6,131,897, the teachings of which are incorporated herein by reference. Some other possible materials include, but are not limited to, polyolefin materials, copolymers and terpolymers with at least one monomer type an alpha-olefin, phenol/formaldehyde materials, phenoxy materials, and polyurethane materials with high glass transition temperatures. Additional materials may also be used such as those disclosed in U.S. Pat. Nos. 5,766,719; 5,755,486; 5,575,526; and 5,932,680, incorporated by reference herein for all purposes.
In applications where the expandable material is a heat activated material, an important consideration involved with the selection and formulation of the material is the temperature at which a material cures and, if expandable, the temperature of expansion. Typically, the material becomes reactive (cures, expands or both) at higher processing temperatures, such as those encountered in an automobile assembly plant, when the material is processed along with the automobile structures at elevated temperatures or at higher applied energy levels, e.g., during coating (e.g., e-coat, paint or clearcoat) curing steps. While temperatures encountered in an automobile assembly operation may be in the range of about 148.89° C. to 204.44° C. (about 300° F. to 400° F.) for body shop applications (e.g., e-coat) and, for paint shop applications, are commonly about 93.33° C. (about 200° F.) or slightly higher (e.g., 120° C.-150° C.).
The expandable material layer may be mechanically attached to the first material layer. The expandable material layer may also be bonded to the first material layer over its entire surface or may be locally bonded to the first material layer at selected locations (e.g., using a tacking type attachment). The expandable material layer may be attached to the first material layer by an adhesive.
The sealing device may include a fastener such as a tree-fastener or a threaded screw fastener. The fastener may also be provided in a variety of shapes and in a variety of configurations so long as it can secure the sealing device to a cavity. One example of a suitable fastener is disclosed in U.S. Publication No. 2010/0021267 incorporated by reference herein for all purposes. The fastener may be capable of securing multiple layers or types of materials to a structure. Examples of suitable fasteners include mechanical fasteners, clips, tabs, press-fits, snap-fits, screws, hooks, combinations thereof or the like. Furthermore, it is contemplated that the one or more fasteners may be formed integral of a singular material with the material of the sealing device (e.g., the first material or the second material layer) or may be formed of a different material and may be removably attached to the carrier. The fastener may be provided as a magnetic material or an adhesive material that can attach (e.g., adhere or magnetically secure) the sealing device to a cavity. In such an embodiment, the magnetic material or the adhesive material may be interspersed within the first material layer or the expandable material layer. Alternatively, the magnetic material or the adhesive material may be disposed upon the first material layer and/or the expandable material layer or may be otherwise connected to the first material layer and/or the expandable material layer.
As discussed in reference to
The sealing device may be installed so that the one or more fasteners contact a vehicle cavity wall. The fastening may occur so that the sealing device is rotated upon placement within a vehicle cavity. The fastening may also occur so that the one or more fasteners are pressed into an aperture for receiving the fastener within the cavity wall so that no additional step of movement or rotation is required for installation.
The sealing device of the present invention may be installed into an automotive vehicle although it may be employed for other articles of manufacture such as boats, buildings, furniture, storage containers or the like. The sealing device may be used to seal and/or baffle a variety of components of an automotive vehicle including, without limitation, body components (e.g., panels), frame components (e.g., hydroformed tubes), pillar structures (e.g., A, B, C or D-pillars), bumpers, roofs, bulkheads, instrument panels, wheel wells, floor pans, door beams, hem flanges, vehicle beltline applications, doors, door sills, rockers, decklids, hoods or the like of the automotive vehicle.
The sealing device may also include an adhesive layer that comprises an outer surface of the sealing device. The sealing device may be free of hinges or other structural modifications that locally control bending of the sealing device. The sealing device may include a plurality of sides with varying lengths, the lengths of some sides being substantially longer than the lengths of other sides. The fastener may extend from a longer side, a shorter side, or from any side. The fastener may extend from an edge that includes sections that are generally non-linear.
The materials may also include a film layer, such as that disclosed in U.S. Patent Publication Nos. 2004/0076831 and 2005/0260399, incorporated by reference herein for all purposes. The film layer may be used to cover a material that is tacky to the touch. The film layer may be removed from the material prior to application of the material to a vehicle structure, such that the film will reveal a tacky surface of the material that will adhere to the structure.
Formation of the materials of the present invention may include a variety of processing steps depending on the desired configuration of the materials. The sealing device may be formed by an extrusion process followed by optional attachment of fasteners. Additional processing and formation steps may not be required. The formation and processing may thus be free of any molding process. This simplified formation process allows for the shape and size of the sealing device to be quickly modified without requiring a new mold or re-design of the part itself. It is generally contemplated one or more layers of materials or one or more different types of materials, including any fasteners and adhesives may be manually attached to each other, automatically attached to each other or a combination thereof. Moreover, various processes such as molding (e.g., compression, injection or other molding), extrusion or the like may be used to form a carrier material and an expandable material individually and such processes may be employed to attach these materials together.
The materials and formation process of the present invention create a simplified lightweight sealing, reinforcement, and baffling device that can be easily customized to fit any cavity. The extrusion process can produce a sealing device of any shape. The high costs of tooling and materials related to traditional injection molded parts is avoided by providing a simple and easily modified laminate sealer. The sealing device can be reversible to create one part that functions for both right and left installation. The perimeter of the sealing device can stand apart from the cavity wall so that the expandable material layer expands to contact the cavity wall to sufficiently seal the cavity. The lightweight nature of the sealing device avoids undesirable sagging and dislodging of the sealing device. The direction of the sealing device once located within a cavity may be easily modified so that the expandable material layer lies above and is supported by the first material layer. Thus, the expandable material will avoid undesirable dripping or flow during expansion.
Any numerical values recited herein include all values from the lower value to the upper value in increments of one unit provided that there is a separation of at least 2 units between any lower value and any higher value. As an example, if it is stated that the amount of a component or a value of a process variable such as, for example, temperature, pressure, time and the like is, for example, from 1 to 90, preferably from 20 to 80, more preferably from 30 to 70, it is intended that values such as 15 to 85, 22 to 68, 43 to 51, 30 to 32 etc. are expressly enumerated in this specification. For values which are less than one, one unit is considered to be 0.0001, 0.001, 0.01 or 0.1 as appropriate. These are only examples of what is specifically intended and all possible combinations of numerical values between the lowest value and the highest value enumerated are to be considered to be expressly stated in this application in a similar manner. As can be seen, the teaching of amounts expressed as “parts by weight” herein also contemplates the same ranges expressed in terms of percent by weight. Thus, an expression in the Detailed Description of the Invention of a range in terms of at “‘x’ parts by weight of the resulting polymeric blend composition” also contemplates a teaching of ranges of same recited amount of “x” in percent by weight of the resulting polymeric blend composition.”
Unless otherwise stated, all ranges include both endpoints and all numbers between the endpoints. The use of “about” or “approximately” in connection with a range applies to both ends of the range. Thus, “about 20 to 30” is intended to cover “about 20 to about 30”, inclusive of at least the specified endpoints.
The disclosures of all articles and references, including patent applications and publications, are incorporated by reference for all purposes. The term “consisting essentially of” to describe a combination shall include the elements, ingredients, components or steps identified, and such other elements ingredients, components or steps that do not materially affect the basic and novel characteristics of the combination. The use of the terms “comprising” or “including” to describe combinations of elements, ingredients, components or steps herein also contemplates embodiments that consist essentially of the elements, ingredients, components or steps. By use of the term “may” herein, it is intended that any described attributes that “may” be included are optional.
Plural elements, ingredients, components or steps can be provided by a single integrated element, ingredient, component or step. Alternatively, a single integrated element, ingredient, component or step might be divided into separate plural elements, ingredients, components or steps. The disclosure of “a” or “one” to describe an element, ingredient component or step is not intended to foreclose additional elements, ingredients, components or steps.
It is understood that the above description is intended to be illustrative and not restrictive. Many embodiments as well as many applications besides the examples provided will be apparent to those of skill in the art upon reading the above description. The scope of the invention should, therefore, be determined not with reference to the above description, but should instead be determined with reference to the appended claims, along with the full scope of equivalents to which such claims are entitled. The disclosures of all articles and references, including patent applications and publications, are incorporated by reference for all purposes. The omission in the following claims of any aspect of subject matter that is disclosed herein is not a disclaimer of such subject matter, nor should it be regarded that the inventors did not consider such subject matter to be part of the disclosed inventive subject matter.
The present application claims the benefit of the priority of U.S. Provisional Application Ser. No. 61/420,869 filed Dec. 8, 2010, the contents of which are incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
625559 | Keeler | May 1899 | A |
4751249 | Wycech | Jun 1988 | A |
4813690 | Coburn, Jr. | Mar 1989 | A |
4901500 | Wycech | Feb 1990 | A |
5266133 | Hanley et al. | Nov 1993 | A |
5358397 | Ligon et al. | Oct 1994 | A |
5506025 | Otto et al. | Apr 1996 | A |
5575526 | Wycech | Nov 1996 | A |
5642914 | Takabatake | Jul 1997 | A |
5708042 | Hasegawa | Jan 1998 | A |
5755486 | Wycech | May 1998 | A |
5766719 | Rimkus | Jun 1998 | A |
5931474 | Chang et al. | Aug 1999 | A |
5932680 | Heider | Aug 1999 | A |
6068922 | Vercesi et al. | May 2000 | A |
6131897 | Barz et al. | Oct 2000 | A |
6150428 | Hanley et al. | Nov 2000 | A |
6199940 | Hopton et al. | Mar 2001 | B1 |
6207244 | Hesch | Mar 2001 | B1 |
6270600 | Wycech | Aug 2001 | B1 |
6276105 | Wycech | Aug 2001 | B1 |
6287666 | Wycech | Sep 2001 | B1 |
6296298 | Barz | Oct 2001 | B1 |
6305136 | Hopton | Oct 2001 | B1 |
6305495 | Keegan | Oct 2001 | B1 |
6368438 | Chang | Apr 2002 | B1 |
6383610 | Barz et al. | May 2002 | B1 |
6389775 | Steiner | May 2002 | B1 |
6413611 | Roberts | Jul 2002 | B1 |
6422575 | Czaplicki | Jul 2002 | B1 |
6455146 | Fitzgerald | Sep 2002 | B1 |
6546693 | Wycech | Apr 2003 | B2 |
6620501 | Kassa et al. | Sep 2003 | B1 |
6649243 | Roberts et al. | Nov 2003 | B2 |
6706772 | Czaplicki | Mar 2004 | B2 |
6786533 | Bock | Sep 2004 | B2 |
6799931 | Kwilosz | Oct 2004 | B2 |
6811864 | Czaplicki | Nov 2004 | B2 |
6820923 | Bock | Nov 2004 | B1 |
6846559 | Czaplicki | Jan 2005 | B2 |
6920693 | Hankins | Jul 2005 | B2 |
6926784 | Bock | Aug 2005 | B2 |
6991237 | Kassa | Jan 2006 | B2 |
7011315 | Czaplicki | Mar 2006 | B2 |
7077460 | Czaplicki | Jul 2006 | B2 |
7125461 | Czaplicki et al. | Oct 2006 | B2 |
7169467 | Wilson | Jan 2007 | B2 |
7199165 | Kassa et al. | Apr 2007 | B2 |
7313865 | Czaplicki et al. | Jan 2008 | B2 |
8028799 | Hasler | Oct 2011 | B2 |
8079442 | Wojtowicki | Dec 2011 | B2 |
8087916 | Kanie et al. | Jan 2012 | B2 |
8293360 | Cousin | Oct 2012 | B2 |
8388037 | LaNore et al. | Mar 2013 | B2 |
8444214 | Helferty et al. | May 2013 | B2 |
8469143 | Prunarety et al. | Jun 2013 | B2 |
20020053179 | Wycech | May 2002 | A1 |
20020074827 | Fitzgerald et al. | Jun 2002 | A1 |
20030045620 | Carlson et al. | Mar 2003 | A1 |
20040011282 | Myers et al. | Jan 2004 | A1 |
20040076831 | Hable et al. | Apr 2004 | A1 |
20050260399 | Finerman | Nov 2005 | A1 |
20060020076 | Finerman | Jan 2006 | A1 |
20060073266 | Myers et al. | Apr 2006 | A1 |
20070193171 | Finerman | Aug 2007 | A1 |
20080110694 | Niezur et al. | May 2008 | A1 |
20090001758 | Hanley, IV et al. | Jan 2009 | A1 |
20090111371 | Niezur et al. | Apr 2009 | A1 |
20090223739 | Duffin | Sep 2009 | A1 |
20100021267 | Nitsche | Jan 2010 | A1 |
20100253004 | Lehmann | Oct 2010 | A1 |
20100320028 | Wojtowicki | Dec 2010 | A1 |
20110057392 | Monnet et al. | Mar 2011 | A1 |
20110063698 | Liu et al. | Mar 2011 | A1 |
20110109003 | LaNore et al. | May 2011 | A1 |
20110189428 | Belpaire et al. | Aug 2011 | A1 |
20110192675 | Lecroart et al. | Aug 2011 | A1 |
20120207986 | Belpaire et al. | Aug 2012 | A1 |
20120295093 | Belpaire et al. | Nov 2012 | A1 |
20130087406 | Franey | Apr 2013 | A1 |
20130140731 | Belpaire | Jun 2013 | A1 |
20130181470 | LaNore et al. | Jul 2013 | A1 |
Number | Date | Country |
---|---|---|
3838655 | May 1990 | DE |
19856255 | Mar 1998 | DE |
19648164 | May 1998 | DE |
19812288 | May 1999 | DE |
29904705 | Jun 1999 | DE |
19835704 | Feb 2000 | DE |
0383498 | Aug 1990 | EP |
0697956 | Feb 1996 | EP |
0730999 | Sep 1996 | EP |
0893332 | Jan 1999 | EP |
1122152 | Aug 2001 | EP |
1149679 | Oct 2001 | EP |
1435320 | Jul 2004 | EP |
1280658 | Aug 2009 | EP |
2097308 | Sep 2009 | EP |
2134799 | Dec 2009 | EP |
2236358 | Jun 2010 | EP |
2242634 | Oct 2010 | EP |
2176113 | Apr 2011 | EP |
2330019 | Aug 2011 | EP |
2360002 | Aug 2011 | EP |
2390077 | Nov 2011 | EP |
2507116 | Oct 2012 | EP |
2533961 | Dec 2012 | EP |
2576176 | Apr 2013 | EP |
1534561 | Aug 2013 | EP |
2262633 | Sep 2013 | EP |
WO 2008080415 | Jul 2008 | FR |
903146 | Aug 1962 | GB |
9328568 | Dec 1997 | JP |
11-165598 | Jun 1999 | JP |
2002221968 | Aug 2002 | JP |
2002331960 | Nov 2002 | JP |
2002-347058 | Dec 2002 | JP |
2004-230834 | Aug 2004 | JP |
2006-123710 | May 2006 | JP |
9525085 | Sep 1995 | WO |
9702967 | Jan 1997 | WO |
9836944 | Aug 1998 | WO |
9850221 | Nov 1998 | WO |
9908854 | Feb 1999 | WO |
0043253 | Jul 2000 | WO |
0046017 | Aug 2000 | WO |
0119667 | Mar 2001 | WO |
0154936 | Aug 2001 | WO |
0188033 | Nov 2001 | WO |
2005077634 | Aug 2002 | WO |
03089221 | Oct 2003 | WO |
2005113689 | Dec 2005 | WO |
2008065049 | Jun 2008 | WO |
2009049886 | Apr 2009 | WO |
2009117376 | Sep 2009 | WO |
2011134943 | Nov 2011 | WO |
2011147872 | Dec 2011 | WO |
2012078729 | Jun 2012 | WO |
Entry |
---|
International Search Report and Written Opinion dated Mar. 14, 2012; for Corresponding PCT Application No. US 2011/063698 filed Dec. 7, 2011. |
Corresponding PCT Application No. US 2011/063698 filed Dec. 7, 2011; Published as WO 2012/078729 A1 on Jun. 14, 2012. |
Chinese Office Action dated Sep. 26, 2011; Appln. No. 200980109337.3. |
Peter Born; Bernd Mayer Structural Bonding in Automotive Applications. |
Gregory W. Hopton; Philip E. Weber; Leslie J. Osenkowski; Gerald J.Renaud, Application of a Structural Reinforcing Material to Improve Vehicle NVH Characteristics. |
Kurt Lilley; Eric Seifferlein; Anita Zalobsky Comparison of Preformed Acoustic Baffles and Two-Component Polyurethane Foams for Filling Body Cavaties. |
Kurt M. Lilley; Michael J. Fasse; Philip E. Weber A Comparison of NVH Treatments for Vehicle Floorplan Applications. |
Kurt M. Lilley; Phil E. Weber Vehicle Acoustic Solutions. |
Chinese Office Action dated Jan. 22, 2015; Appln. No. 201180059336X. |
Number | Date | Country | |
---|---|---|---|
20120146296 A1 | Jun 2012 | US |
Number | Date | Country | |
---|---|---|---|
61420869 | Dec 2010 | US |