Sealing between a cannula part and a fluid path

Information

  • Patent Grant
  • 10898643
  • Patent Number
    10,898,643
  • Date Filed
    Thursday, February 12, 2009
    15 years ago
  • Date Issued
    Tuesday, January 26, 2021
    3 years ago
Abstract
The application relates to an infusion part comprising a cannula part (7) and a fluid path, whereby a sealing (18) is positioned between the cannula part and an inlet/outlet opening (12) of the fluid path when the cannula part is in position for use in order to keep the fluid path to a cannula tight. The sealing (18) is surrounding the inlet/outlet opening (12) and/ or the distance d1 between a centre line c of the cannula part and a point on an outer surface of the cannula part positioned at or above an upper edge of the sealing (18) is larger than the distance d2 between the centre line c of the cannula part and a point on the outer surface of the cannula part positioned at or below a lower edge of the sealing.
Description
THE TECHNICAL FIELD

The invention relates to an infusion part comprising a cannula part and a fluid path for providing continuous administration of a therapeutically working substance, such as insulin. The infusion part can be connected to delivery means which means provide e.g. controlled dosage of medication or nutrients.


PRIOR ART

WO 2007/071258 describes a medical device for delivering fluid comprising an injection part and a fluid delivery part where the fluid delivery part and the injection part can be separated and rejoined. The fluid delivery part comprises a reservoir, means for transport of liquid e.g. in form of a pump and a house in which the active units of the delivery part is placed. The injection part comprises: a base plate, a cannula part comprising a body with a through going opening provided with a cannula extending past the proximal side of the base plate and means for fixation of the base plate to the skin of the user e.g. in the form of a mounting pad. The cannula part is provided with one or more openings leading fluid to a hollow in the cannula part and each opening is covered with a self closing membrane. The delivery part and the injection part is assembled through a connector comprising a fluid path leading fluid from the reservoir to the through-going opening in the cannula part which fluid path comprises means for blocking access to the injection part when the connector is disconnected from the delivery part and/or the injection part. The embodiments illustrated in this document are quite complex and not easy to manufacture.


EP 652 027 discloses an infusion device to be placed on a patients skin for delivering of medication. This infusion device comprises a cannula device (10) carrying a penetrating cannula of steel. The cannula device (10) is concentric i.e. all parts of the cannula device are rotational symmetric with respect to rotation around the common axis. The cannula device (10) can slide axially and has a channel (11) with an inlet opening in the cylindrical side surface which inlet opening corresponds to an outlet opening of a channel (7) through which medication or the like is entering. Above and below the outlet of the channel (7) is placed a first and a second O-ring (8). Both O-rings (8) are placed in circular grooves in the inner surface of the surrounding the house (1). In this device the inserter and the cannula device are permanently joined together and this allows the cannula device to be at least partly inserted into a cannula opening which fits tightly around the cannula device even before insertion of the cannula device has taken place i.e. this results in that there are friction between the cannula part and the inner surface of the house during the entire insertion procedure. Also there is no teaching in this document of how to adapt the use of a soft cannula to this device.


THE INVENTION

The object of the invention is to provide an infusion part allowing the use of a soft cannula which is safe and simple to manufacture and which reduces the friction between the cannula part and the base part and therefore also the risk of incorrect positioning of the cannula part during insertion. This object is achieved by reducing the time where both the moving cannula part and the inner surface of the opening for receiving the cannula part are in contact with the gasket sealing of fluid from the surroundings. This can generally be achieved by creating a cannula part having an increasing diameter or by creating a sealing with a smaller area.


This object is achieved by an infusion part as described in claim 1 comprising a cannula part and a fluid path, where

    • the cannula part comprises a body formed by a hard material which body has an inner through going opening which through going opening is in fluid contact with a cannula, the cannula has an inner opening which provides fluid contact with the patient, the body of the cannula part has an opening corresponding to the inlet or outlet opening of the fluid path resulting in fluid contact between the fluid path and the cannula part and these two corresponding openings do, when they are positioned opposite each other, allow unrestricted flow,
    • the fluid path comprises at least one inlet and one outlet opening through which a fluid can enter and exit the fluid path, and
    • a sealing is positioned between the cannula part and the inlet/outlet opening of the fluid path when the cannula part is in position for use in order to keep the fluid path to the cannula tight.


The sealing is surrounding the inlet/outlet opening and/or the distance d1 between a centre line c of the cannula part and a point on the outer surface of the cannula part positioned at or above the upper edge of the sealing is larger than the distance d2 between the centre line c of the cannula part and a point on the outer surface of the cannula part positioned at or below the lower edge of the sealing. “Upper edge of the sealing” defines the part of the sealing or gasket which has the longest distance to the patient's skin, and “lower edge of the sealing” defines the part of the sealing which has the shortest distance to the patient's skin when the infusion part according to the invention is inserted in a use position.


According to one embodiment the body of the cannula part is provided with a sealing before use or alternatively the opening of the fluid path or the surface surrounding the opening of the fluid path is provided with a sealing before use. “Provided” means that the sealing or gasket is somehow attached to the indicated surface, it might just be placed in a groove or a cavity as indicated in FIG. 9 or 10.


According to one embodiment the penetrating member is provided with attachment means assuring that the penetrating member is unreleasably attached to the base part after insertion.


According to one embodiment the body of the cannula part is provided with a sealing or gasket placed along the edge of the opening through which fluid enters or exits the cannula part.


According to one embodiment the opening of the fluid path corresponding to an opening of the cannula part is provided with a sealing placed along the edge of the opening i.e. in a short distance from the opening. “A short distance” is understood to be less than or equal to the distance equaling the diameter of the opening and if the opening is not round: less than or equal to the longest dimension of the opening.


The sealing material according to any embodiment can be hydrophobic and elastic e.g. the sealing material is made of silicone.


According to an embodiment the body of the cannula part has at least one second opening to the inner through going opening and preferably this at least one second opening to the inner through going opening is covered by a self closing membrane which membrane can be penetrated by a blunt or pointy needle and can be made of silicone.


This at least second opening can e.g. be used for insertion of the device if the cannula is a soft cannula not able to cut its way through the patients skin, then a separate insertion needle can pass through the second opening, all through the cannula and provide a cutting edge in front of the cannula. It can also be used for supplying medication or nutrients which only are given to the patient in smaller doses a few times a day.


According to an embodiment the infusion part comprises a base part which can be fastened to a patient's skin.


According to one embodiment of such an infusion part the base part is provided with an opening corresponding to the profile at the non-penetrating end of the cannula part.


The “non-penetrating end” of the cannula part is the end opposite the cannula i.e. the distal end of the penetrating member where “distal” indicates the end is turned away from the patient. In the embodiment of the cannula part shown in the FIGS. 4A, 4B and 4C the cannula part has a flat surface part on one side corresponding to a flat wall surrounding the opening of the fluid path, i.e. that the opening is “adapted” means that the surrounding walls correspond to the cannula part and assures that the cannula part ends up in a well-defined and close fitted—preferably press-fitted—position. “Press-fitted” means that it is so close fitted that it requires a force to insert the cannula part.


According to this embodiment the opening can extend below the outer surface of the base part providing walls which tightly fits around the cannula part when the cannula part is inserted into the patient and preferably the inlet or outlet opening of the fluid path opens into the wall of the opening fitting around the cannula part and when the cannula part is inserted, an inlet or outlet to the inner opening of the cannula part corresponds to the inlet/outlet opening of the fluid path.


According to one embodiment the distance d1 between a centre line c of the cannula part and a point on the outer surface of the cannula part positioned at the upper edge of the sealing (18) is larger than the distance d2 between the centre line c of the cannula part and a point on the outer surface of the cannula part positioned at the lower edge of the sealing. The centre line c is parallel to the direction of insertion.


According to one embodiment the angle d is the angle between the direction of insertion of the cannula part and a plane being tangent to the surface surrounding the opening opposite the sealing, and 0<d≤90°, normally 45≤d≤80° and most often 70≤d≤80°.


When a cannula part with a decreasing cross-section is inserted into a hollow with a corresponding decreasing hollow then the cannula part can be press-fitted into the hollow. This press-fitting both assures that the two corresponding openings of respectively the fluid path and the cannula part are pressed together thereby improving the fluid tight connection between them and it can also lock the cannula part to the base part.


According to one embodiment the base part is formed at least partly of a hard material. That a material is “hard” means that it can not be penetrated by a needle, and also that it is able to maintain a shape it is given during production although it might be possible to flex the material due to the shape it is given e.g. if it is formed as a thin plate or if it is very long but it will not be possible to compress it i.e. reduce it size.


According to one embodiment the fluid path is formed as an integrated part of the base part fastened to the patient's skin. That the fluid path is formed as an integrated part means that it is an unreleasable part of the device, i.e. it is permanently attached to the device at some time during the manufacturing process of the base part and when the base part is in use it will not be possible to separate the fluid path and the rest of the base part.


According to one embodiment the hard material is a molded plastic material e.g. the plastic material is polypropylene.


According to one embodiment the base part comprises fastening means for attaching delivery means to the base part. The delivery means can comprise a connecting part provided with means corresponding to the means for fastening of delivery means and provided with a tube for transferring medication to the infusion part or the delivery means can comprise a reservoir containing medication and means for transferring medication to the infusion part. The means for transferring will normally be a pump and a programmable part possibly combined with a sensor for assuring appropriate amounts of medication to be delivered to the patient.





Embodiments of the invention will now be described with reference to the figures in which:



FIG. 1 shows a first embodiment of an infusion part according to the invention.



FIGS. 2 and 2A shows a second embodiment of an infusion part according to the invention.



FIG. 3 shows the same embodiment of an infusion part as FIGS. 2 and 2A.



FIGS. 4A, 4B and 4C show a cannula part which can be used in connection with the invention.



FIG. 5 shows a front view of an inserter which can be used in connection with the invention.



FIG. 6 shows a view from the proximal side of the inserter of FIG. 5.



FIG. 7 shows a connector part which can be part of an infusion part according to the invention.



FIG. 8 shows the same connector part as FIG. 7 without the bubble membrane covering the inlet.



FIGS. 9A and 9B show a cannula part having an inclined contact surface.



FIG. 10A-10D show an enlargement of the contact between the cannula part and the cannula opening of the connection part.



FIGS. 11A, B and C show an embodiment of a base part provided with a fluid path mainly constructed of a tube.



FIG. 12 shows an embodiment of an infusion part having an angle d=90° between insertion direction and tangent to contact surface.



FIG. 13 shows a cannula part which can be used in connection with the invention.






FIG. 1 shows an embodiment of an infusion part comprising a cannula part and a fluid path according to the invention. This embodiment comprises a surface plate 1 attached to a contact surface. The surface plate 1 is in this embodiment constructed of a molded plastic material and the contact surface can be the proximal side of a mounting pad 2 which mounting pad 2 is unreleasably fastened to the surface plate 1 during manufacturing of the device. The mounting pad 2 of this embodiment has the same area as the surface plate 1 but it could be of an area larger or smaller than the surface plate 1.


A connector part 3 is position on the surface plate 1. The connector part 3 provides for the contact between the base part and some kind of delivery means. According to one embodiment the surface plate 1 and at least an outer cover of the connector part 3 is simply molded in one piece during manufacturing of the device. The internal parts of the connector part 3 forms a fluid path between e.g. a reservoir of medication or a reservoir for liquid collected from the patient and a cannula part 7. Therefore the connector part 3 is provided with at least two openings, one opening at each end of the fluid path where the first opening 13 is an inlet or outlet opening receiving or delivering fluid to a not shown reservoir and the second opening is an inlet or outlet opening 12 receiving or delivering fluid to a cannula part 7. The connection part 3 might be provided with extra openings e.g. for inserting the cannula part, for injection of a second medication or nutrient or for letting the fluid in the fluid path get in contact with a sensor.


In the following the first opening 13 will be referred to as “inlet” and the second opening will be referred to as “outlet” although the direction of the flow through the fluid path is not significant for the invention.


The embodiment of FIG. 1 is provided with two guiding means 4 in the form of two right angled L-shaped profiles in the form: ┐ ┌, which profiles are protruding from the surface plate 1 of a base part having a lower or proximal side which is fastened to the skin of the patient. The guiding means 4 correspond to guiding means on a delivery part or a cover or connecting means which are to be fastened to the base part during use. Such corresponding means can e.g. be formed as one or more hooks having an L-shaped profile in the form: └ and ┘ corresponding to the profiles on the base part.


The fluid path of the connection part 3 of this embodiment is very short and the inlet 13 of the connection part 3 is placed in a centre position in relation to the guiding means 4. The top of an inserted cannula part 7 is shown inserted into the connection part 3.


The connection part 3 is further provided with a cannula cavity 12A which accurately fits around a cannula part 7 i.e. the cannula cavity 12A has the same 3-dimensional shape or profile as the cannula part 7 and is just big enough to let the cannula part 7 pass through and then fit into the opening. In FIG. 1 the cannula part 7 is shown in a position where the cannula part 7 is fully inserted. When the cannula part 7 is fully inserted, then the upper surface i.e. the distal surface of the cannula part 7 is normally at level with or at a lower level than the outer surface of the connection part 3 around the cannula cavity 12A.


When the cannula part 7 has been fully inserted into the connection part 3, an opening 20 in a side surface of a body 24 of the cannula part 7 corresponds to the opening 12 of the fluid path of the connection part 3 and fluid can flow from one part to the other. The opening 12 might in the following be referred to as an “outlet” although the direction of the flow is not significant to the invention.



FIGS. 2 and 3 show a second embodiment of an infusion part according to the invention. A delivery part corresponding to this embodiment could be joined to the base part by pushing the delivery part down toward the guiding means 4 which in this case is a longitudinal raised platform having a magnet 5 fastened to the top surface. The delivery part would be provided with a corresponding magnet e.g. of a smaller or different size than the magnet 5 which is placed in such a way e.g. in a track corresponding to the raised platform 4, that the corresponding magnet of the delivery part can slide along the magnet 5 on the raised platform 4 of the base part in the longitudinal direction. When the delivery part arrives at its working position, two release handles can engage respectively with two protruding parts 15 protruding from the upper surface of the surface plate 1. When the delivery part is in its working position it is locked in any horizontal direction by the release handles and in the direction perpendicular to the surface plate 1 by the two corresponding magnets of respectively the delivery part and the base part. These locking mechanisms make it possible to fasten and release the delivery device from the base part as often as needed i.e. a single-use base part can be combined with a multi-use delivery part.


In FIGS. 2 and 2A the base part is shown without the cannula part 7 and in FIG. 3 the base part is shown having the cannula part 7 in a positioned reached just before insertion of the cannula part 7, normally the cannula part 7 would at this stage of insertion still be placed inside an inserter and it would not be visible.


Normally an inserter 10 holds the cannula part 7 before insertion and the insertion can be initiated by pushing a handle 11. FIGS. 5 and 6 shows the direction the handle 11 has to be pushed in, in order to initiate insertion of the cannula part 7. After insertion a not shown insertion needle can be retracted to the inside of the inserter 10 and the inserter 10 is removed from the base part, leaving an inserted cannula 22 fastened to the surface plate 1. If the cannula 22 of the cannula part 7 is a hard self penetrating cannula there will be no separate insertion needle and therefore no need to retract the insertion needle.


In FIGS. 2 and 2a the connection part 3 is shown with an outer cover provided by the molded surface plate 1. The outer cover shown in this embodiment is not an independent unit but is attached unreleasably to or simply made as a part of the surface plate 1 e.g. by a molding process. The outer cover is provided with a cannula cavity 12A for the cannula part 7 and an access opening 13 for e.g. a reservoir thereby allowing access to the fluid path of the connection part 3 by the reservoir and the cannula part 7. The cannula cavity 12A allows the cannula part 7 to be inserted sub- or transcutaneous into the patient within the circumference of the hard surface plate 1 and the contact surface 2 of the base part which in this embodiment is provided by a mounting pad is also provided with an opening 12B which allows for the cannula to be inserted (see FIGS. 7 and 8). This opening 12B is not necessary if the contact surface 2 is constructed of such a material and thickness that it can be penetrated by at least the cannula 22 of the cannula part 7.


In FIGS. 7 and 8 the connection part 3 is shown without the outer cover provided by the molded surface plate 1. In order to secure a fluid tight connection between the outlet opening 12 in the connection part 3 and the cannula part 7 the outlet opening 12 of the connection part 3 is provided with an elastic sealing 18 around the outlet opening 12. When the cannula part 7 is inserted it will be press fitted into the cannula opening 12 and the elastic sealing 18 will provide a completely fluid tight gasket around the corresponding openings 12 and 20. In order to improved the press-fitting and thereby the fluid tight connection between the cannula part 7 and the outlet of the fluid path, the cannula cavity 12A can be provided with a decreasing cross-section in a plane parallel to the cannula 22 when inserted and perpendicular to the surface where the outlet of the fluid path is positioned. The cannula part 7 will have a corresponding decreasing cross-section.


In order to secure a fluid tight connection between the inlet opening 13 in the connection part 3 and the reservoir 6, a bubble shaped membrane 17 has been positioned around the first opening 13. The membrane 17 completely covers the inlet opening 13 and prevents contamination of the internal of the connection part 3. When a reservoir or connecting parts for a reservoir is pressed towards the connection part 3, a connector needle 19 will penetrate the membrane 17 and provide a completely fluid tight transfer of fluid between the connection part 3 and the reservoir.


That the membrane 17 is bubble shaped means that it is attached around the opening—normally around the edge of the opening—it protects and the membrane 17 protrudes from the planed formed by the edge of the opening and forms a dome in a distance from the edge which distance normally corresponds to the length of a connector needle 19.


In FIG. 8 the connector needle 19 is shown as being a part of the connection part 3 i.e. it is attached to the connection part 3 but it might just as well be a part of the reservoir.


According to one embodiment the connection part 3 is provided with both a connector needle 19 and a bubble shaped self closing membrane 17 and the reservoir is also provided with a bubble shaped self closing membrane. As both parts are provided with self closing membranes it will be possible to separate the two units from each other and rejoin them at a later time without the internal fluid path of the connection part 3 and thereby the patient being contaminated.



FIGS. 4A, 4B and 4C shows an enlargement of a cannula part 7 which can be used in connection with the invention. This embodiment comprises a body 24 provided with a cannula 22 and with a protruding front 25 having a flat surface. The surface of the cannula part 7 having an opening need not be flat; it can actually have any desired shape as long as it is possible to create a corresponding surface on the connection part 3 facing the cannula part 7. In one embodiment the front 25 is inclined in such a way that the cross-section at the upper i.e. distal end is larger than the cross-section at the proximal end, i.e. the enc closest to the patient after insertion, of the front in at least one dimension. The front 25 is provided with an opening 20 through which liquid can exit or enter the cannula part 7. The body 24 is further provided with a top opening 21 which opening can be covered with a self closing membrane. The opening 21 need some kind of entrance protection as it is facing an outer surface which is in contact with the surroundings. The top opening 21 is primarily used when inserting the cannula part 7 if the cannula 22 is a soft cannula. That the cannula 22 is soft means that is made of a relatively soft material which can not penetrate the patients skin, in this case it is necessary to use a pointy insertion needle of a relatively hard material when inserting the cannula and this pointy needle can be inserted through the top opening 21, pass through an inner through going opening in the body 24 of the cannula part and further pass through the full length of the cannula 22 in such a way that the pointy end of the insertion needle stick out of the open end of the hollow cannula 22. After insertion i.e. after the cannula 22 has been placed sub- or transcutaneous in the patient, then the insertion needle is retracted and the cannula 22 is left inside the patient.


The cannula part 7 is also provided with fastening means 23 which fastening means 23 lock the cannula part 7 to the base part at the time where it is fully inserted. The fastening means 23 of this embodiment comprises outward hooks that can pivot around an axe close to the body 24 of the cannula part 7 in such a way that the diameter formed by the outermost edge of the hooks can be reduced when the hooks are pressed inward i.e. towards the centre of the cannula part 7. When the pressure is removed the hooks will return to their original position due to the flexibility of the material. The hooks will be pushed inwards when they pass an opening such as e.g. the opening 12B or a corresponding opening in the surface plate having a cross-section which at least in one dimension is smaller than the outer edge of the hooks and as the hooks return to their original position after having passed through the opening, the hooks will lock the cannula part 7 in the inserted position.



FIGS. 5 and 6 show an inserter that can be used to position the cannula part 7 in the base part. The inserter comprises a housing 10 provided with an internal opening where the cannula part 7 can be moved from a retracted position to a forward position. In the retracted position the cannula 22 is not in contact with the patient and in the forward position the cannula 22 is inserted into the patient. The inserter further comprises an actuator handle 11 which is to be activated when the cannula part 7 is to be inserted and it comprises fastening means 14 which means can lock the inserter to the base part before and during insertion. Normally the inserter should be fastened to the base part under sterile conditions or the joined base part and inserter should be sterilized after fastening of the inserter in order to prevent contamination of the cannula cavity 12A, and in order to reduce the amount of material placed on the patient's skin it is desirable to be able to remove the whole of or at least part of the inserter after the cannula part 7 has been inserted.



FIGS. 9A and 9B show an enlargement of a second embodiment of a cannula part 7. FIG. 9A shows the cannula part 7 in a state just before insertion and FIG. 9B shows the cannula part 7 inserted into the cavity 12A in the base part.


This embodiment also comprises a body 24 provided with a cannula 22 and with a protruding part 25 having a flat surface provided with an opening 20. According to this embodiment the protruding part 25 is inclined in such a way that the pressure between the opening 20 and the sealing 18 around the second opening 12 of the connection part 3 is increased, also the sealing 18 is subjected to less tear during insertion. The inclination of the inclined part 25 is defined by the angle d between the centre line c of the cannula 22 (the centre line c is parallel to the insertion direction) and a line parallel to the surface around the opening 20. If the surface around the opening 20 is not straight, then the line parallel to the surface would be the tangent to the surface around the opening 20. The angle d will be larger than 0° and smaller than or equal to 90°, normally d ∈]0°, 30°] depending on the diameter or the protrusion of the sealing 18 or [60°, 90°[. The distance d1 measured at the distal end of the surface of the protruding inclined part 25 where the distal end is the end of the cannula part 7 which is furthest away from the patient after insertion, between the surface of the protruding inclined part 25 and the centre c of the cannula part 7 is larger than the distance d2 between the surface of the protruding part 25 at the proximal end i.e. the end closest to the patient after insertion, and the centre c of the cannula part 7. Normally the distance d2 will be so small that the proximal end of the protruding inclined part 25 does not touch the sealing 18 of the connection part 3 during insertion.


In one embodiment (not shown) the angle d is close to 90° i.e. d=90°, such an embodiment would in a drawing corresponding to FIGS. 9A and 9B appear to have an upward opening 12 of the connection part 3 fitting to a downward opening 20 of the cannula part 7. This means that the force pushing the cannula part 7 toward the sealing 18 will be close to perpendicular to the contact surface of the sealing 18 and this will prevent that the sealing is distorted during insertion of the cannula part 7 by the cannula part 7 sliding along the sealing 18.


In another embodiment (shown in FIGS. 4A-C and in FIGS. 10A-B) d=0° as the protruding part 25 and the centre line c are parallel. According to this embodiment the cannula part 7 will be in sliding contact with the protruding sealing 18 which can cause the sealing to be distorted.


The protruding front 25 of the cannula part 7 need not be flat; it can actually have any desired shape e.g. partly spherical as long as it is possible to create a corresponding surface on the connection part 3 facing the cannula part 7. Also the opening 20 of the protruding front 25 can behave as an inlet or an outlet depending on the purpose of the cannula part 7. In FIGS. 9A and 9B which is a cut-through view it is shown how the top opening 21 of the body 24 is covered with a self closing membrane 21A. As according to the embodiment of FIG. 4A-C the top opening 21 is primarily used when inserting the cannula part 7 if the cannula 22 is a soft cannula but the top opening 21 can also be used to inject medication or nutrients other than the primary medication which could be e.g. insulin which the patient receive via the opening 20.


This embodiment of the cannula part 7 is also provided with fastening means 23 and in this embodiment the fastening means 23 has the form of a protruding part 23 on the cannula part 7 which corresponds to a flexible part 23A on the stationary base part. The flexible part 23A can be pushed outward as indicated with an arrow at FIG. 9A when the protruding part 23 on the cannula part 7 passes during insertion of the cannula part 7. After insertion the upward surface of the protruding part 23 of the cannula part 7 will be locked by the downward surface of the flexible part 23A of the base part and it will not be possible to detach the cannula part 7 from the base part.


The cannula part 7 of FIGS. 9A and 9B is provided with a soft cannula 22 which soft cannula 22 together with a bushing 29 provides a cannula assembly. This assembly is normally fastened inside the body 24 of the cannula part 7 by an interference fit i.e. it is only the friction between the body 24 and the cannula assembly which keeps it in the correct position. In order to prevent the cannula assembly from sliding back through the upper larger opening in the body 24 of the cannula part 7, the body 24 of the cannula part 7 can be provided with a ring shaped recess encircling the exit for the soft cannula 22. As the recess creates an open space around the soft cannula 22, the soft cannula 22 can form a small bulk i.e. a ring shaped bulk which prevents the soft cannula from sliding back.



FIG. 10 illustrates how the unrestricted openings between the cannula part 7 having the body 24 and the fluid path having the inlet/outlet opening 12 slide into place. FIGS. 10A and 10B show an embodiment where d=0° and FIGS. 10C and 10D show and embodiment where d is around 15°, normally between 8-22°. According to the embodiment of FIGS. 10A and 10B the body 24 of the cannula part 7 is provided with an inclined edge in order to reduce distortion or tearing of the sealing. In both embodiments the shown sealing 18 is a circular or cylindrical silicone unit which is placed in a round track around the inlet/outlet opening 12 in the connection part 3. The wall where the sealing or gasket 18 has been placed is provided with an adjacent expansion room 28. After positioning of the cannula part 7 the sealing 18 can occupy this room. In the embodiment of FIGS. 10C and 10D is not only the sealing face angled, the whole cylindrical sealing part 18 is angled in order to allow uniform sealing deformation. The cylindrical sealing 18 does not form the walls of the inlet/outlet opening 12, the wall or surfaces of this opening is formed by the material which the connection part 3 is formed of in order to provide a pipe which cannot be deformed. In order to create the necessary pressure between the seal and the seal face i.e. the surface which the sealing 18 touches when in a sealing position, the sealing face can be provided with a small continuous protrusion protruding from the sealing face and having the same shape as the sealing which would e.g. be circular if the sealing has the cylindrical shape shown in FIG. 10A-D.



FIGS. 11A-11C show one embodiment of a connection part 3. FIG. 11A show the embodiment of the connection part 3 in an exploded view where the internal holding parts 61 for a tube 60 providing a fluid path is shown. FIG. 11B shows a cut through the internal holding part 61 according to which it is possible to the position of the tube 60. FIG. 11C shows an enlargement of the encircled part of FIG. 11A.


According to the present embodiment the connection part 3 and the surface plate 1 is molded in one piece of a plastic material, the connection part is provided with several openings, one opening is the cavity 12A which is prepared for fitting in the cannula part 7 and another opening is prepared for fitting in the internal parts of the connection part 3. The internal parts of the connection part 3 according to this embodiment comprises one tube which at two positions are bend in 90° i.e. both the inlet and the outlet end of the tube 60 points in the same direction perpendicular to the connecting part of the tube 60 where the connecting part of the tube 60 forms the fluid path between the two bending parts.


At one end the tube 60 is protected by a bubble shaped membrane 17 and at the other end the tube 60 is open and unprotected, but the open tube end is surrounded by a sealing 18 which is attached unreleasably to a holding part 61. When the internal parts have been placed in the corresponding opening in the connection part 3 a cover 62 accurately fitting in the opening is placed in level with the surface of the connection part 3 in such a way that the user experience a smooth surface which cannot be tampered with.


The embodiment of the base part shown in FIG. 11A is provided with guiding means 26 placed inside the cavity 12A of the connection part 3. The two opposing ribs 26 which constitute the guiding means correspond to closely fitting openings 27 in the cannula part 7. The guiding means 26 and the corresponding parts 27 on the cannula part can have other forms, the important feature is that they correspond to each other and make it possible for the cannula part 7 to slide into use position.



FIG. 11B shows an enlargement of the internal parts of the connection part 3. The holding parts 61 comprise a single molded part which is providing a stable embedment of the tube 60. The open end of the tube 60 opens into a space surrounded by the sealing 18. The closed end of the tube 60 is completely surrounded by a soft membrane. “Completely surrounded” means that the there is no free access to the surroundings, “soft membrane” means that the membrane can be penetrated by a needle, especially the connector needle 19 which is provided by the end of the tube 60 and which is embedded inside the soft membrane. The end of the tube 60 which constitutes the connector needle 19 is in this embodiment not actually in touch with the surrounding membrane 17. The connector needle 19 is surrounded by air, and the internal space surrounding the connector needle 19 has a cylindrical or conical shape i.e. a circular cross-section. The walls of the membrane 17 will deform by bending inwards or outwards when the length of the membrane is reduced as a result of the applied pressure.



FIG. 11C shows an enlargement of the enclosed field marked in FIG. 11A.



FIG. 12 shows an embodiment of an infusion part where the angle d=90°. The inlet/outlet opening 12 is constructed as a pointy end of a tube 60 which provide for the fluid path or connection between the reservoir 6 and the cannula part 7. A membrane e.g. self closing protects the entrance to the reservoir 6 which means that micro organisms cannot access the reservoir 6 when the reservoir is removed from the connection part 3.



FIG. 13 shows yet an embodiment of a cannula part 7 which can be used with an infusion part according to claim 1. The body 24 of the cannula part 7 has the shape or profile of a truncated cone i.e. in each horizontal (according to FIG. 13) cross-section of the body it is round having varying diameters. The body 24 is provided with two permanently attached circular sealings or gaskets 18. Between these two gaskets 18 is the opening 20 positioned which opening 20 allows for fluid to enter the inner through going opening of the cannula part 7. The cannula part 7 is to be placed in a below illustrated connection part 3 provided with a corresponding cavity 12A also having the shape of a truncated cone. The cavity 12A has an inlet/outlet opening 12 for fluid flowing to or from the cannula 22.

Claims
  • 1. An infusion part comprising: a base part attached to a patient's skin during use, the base part comprising a connector part, the connector part comprising a fluid path, the fluid path comprising two fluid path openings, wherein each fluid path opening of the two fluid path openings is an inlet opening or an outlet opening;a cannula part, comprising a body and a cannula, the body comprised of a hard material contacting at least a part of the cannula, the cannula attached to the body, and having an inner through going opening in fluid contact with the cannula, the cannula comprising a center line, wherein the center line is straight and perpendicular to a surface of the base part configured to be aligned with the patient's skin before insertion into the patient, and the cannula has an inner opening providing fluid contact with the patient, the body of the cannula part comprising a protruding front part comprising a flat surface, wherein the protruding front part of the cannula part comprises an opening defined through the flat surface and corresponding to one of the two fluid path openings of the connector part, wherein fluid flow through the cannula part to the patient is allowed when the opening of the protruding front part of the cannula part is positioned opposite of the one of the two fluid path openings of the connector part, and wherein the protruding front part comprising the flat surface has an inclination defined by an angle d between the center line of the cannula and the flat surface of the protruding front part, wherein the angle d is such that 0°<d <90°; anda sealing part positioned between the cannula part and the one of the two fluid path openings when the cannula part is in position for use, wherein the sealing part is provided on the connector part around the one of the two fluid path openings when the cannula part is in position for use, wherein a material of the sealing part is elastic;wherein, the base part further comprises a cavity corresponding to the cannula part, and the cavity comprises walls that are adapted to press-fit the cannula part when the cannula part is being inserted into the patient, and wherein the cannula is capable of being inserted into the patient along a direction of insertion.
  • 2. The infusion part according to claim 1, wherein the connector part is provided with the sealing part before use, and wherein the sealing part is provided in a round track surrounding the one of the two fluid path openings.
  • 3. The infusion part according to claim 1, wherein the material of the sealing part is hydrophobic and elastic.
  • 4. The infusion part according to claim 1, wherein the material of the sealing part comprises silicone.
  • 5. The infusion part according to claim 1, wherein the body of the cannula part has at least a second opening to the inner through going opening.
  • 6. The infusion part according to claim 5, wherein the second opening to the inner through going opening is covered by a self closing membrane, and wherein the membrane is penetrable by a blunt or pointed needle.
  • 7. The infusion part according claim 1, wherein the cavity extends below an outer surface of the base part providing the walls that tightly fit around the cannula part when the cannula part is inserted into the patient.
  • 8. The infusion part according to claim 7, wherein the one of the two fluid path openings opens into the walls of the cavity fitting around the cannula part and when the cannula part is inserted, the opening of the protruding front part corresponds to the one of the two fluid path openings.
  • 9. The infusion part according to claim 1, wherein the base part comprises a hard material.
  • 10. The infusion part according to claim 9, wherein the hard material is a molded plastic material.
  • 11. The infusion part according to claim 1, wherein the two fluid path openings are formed as an integrated part of the base part.
  • 12. The infusion part according to claim 1, wherein the cannula part is provided separate from and connectable to the base part to allow fluid flow.
  • 13. The infusion part according to claim 12, wherein the cannula part is connectable to the base part with an inserter.
  • 14. The infusion part according to claim 1, further wherein, the fluid path is defined through a tube that is selectively coupled to the connector part.
  • 15. An infusion assembly, comprising: a plate configured to be positioned adjacent to a patient's skin;a connector part coupled to, or formed from, the plate, the connector part having a fluid path defined from a cannula cavity to an access opening;a cannula part configured to be selectively received at least partially within the cannula cavity, the cannula part comprising: a body;a cannula coupled to the body along a center line and configured to extend past the plate to contact the patient when the cannula part is positioned at least partially within the cannula cavity; anda body opening defined through the body and angularly offset relative to the center line by an angle larger than 0 degrees and smaller than 90 degrees, the body opening providing a fluid path through the body to the cannula;a first fluid path opening at the cannula cavity positioned to be at least partially aligned with the body opening when the cannula part is positioned within the cannula cavity; anda sealing positioned to fluidly seal the body opening with the first fluid path opening when the cannula part is positioned within the cannula cavity.
  • 16. The infusion assembly of claim 15, further wherein the body has a protruding front having a flat surface that is alignable with the first fluid path opening.
  • 17. The infusion assembly of claim 16, further wherein the body opening is defined through the flat surface.
  • 18. The infusion assembly of claim 17, further wherein the flat surface is inclined relative to the center line.
  • 19. The infusion assembly of claim 15, further wherein the access opening comprises a connector needle substantially surrounded by a self closing membrane, wherein when the cannula part is positioned at least partially within the cannula cavity the cannula is fluidly coupled to the connector needle.
Priority Claims (1)
Number Date Country Kind
2008 00202 Feb 2008 DK national
Parent Case Info

This application claims the benefit under 35 U.S.C. § 371 of International Application No. PCT/EP2009/051634, filed Feb. 12, 2009, which claims the benefit of Danish Patent Application No. PA 2008 00202, filed Feb. 13, 2008, and U.S. Provisional Application Serial No. 61/028,259, filed Feb. 13, 2008.

PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/EP2009/051634 2/12/2009 WO 00 10/27/2010
Publishing Document Publishing Date Country Kind
WO2009/101130 8/20/2009 WO A
US Referenced Citations (586)
Number Name Date Kind
1592462 MacGregor Jul 1926 A
2047010 Dickinson Jul 1936 A
2295849 Kayden Sep 1942 A
2690529 Lindblad Sep 1954 A
2972779 Cowley Feb 1961 A
3059802 Mitchell Oct 1962 A
3074541 Roehr Oct 1963 A
3149186 Coanda Sep 1964 A
3221739 Rosenthal Dec 1965 A
3221740 Rosenthal Dec 1965 A
3306291 Burke Feb 1967 A
3485352 Pilger Dec 1969 A
3509879 Bathish et al. May 1970 A
3519158 Anderson Jul 1970 A
3547119 Hall et al. Dec 1970 A
3575337 Bernhardt Apr 1971 A
3610240 Harautuneian Oct 1971 A
3615039 Ward Oct 1971 A
3670727 Reiterman Jun 1972 A
3783895 Weichselbaum Jan 1974 A
3788374 Saijo Jan 1974 A
3810469 Hurschman May 1974 A
3835862 Villari Sep 1974 A
3840011 Wright Oct 1974 A
3893448 Brantigan Jul 1975 A
3937219 Karakashian Feb 1976 A
3986507 Watt Oct 1976 A
3986508 Barrington Oct 1976 A
3995518 Spiroff Dec 1976 A
4022205 Tenczar May 1977 A
4188950 Wardlaw Feb 1980 A
4201406 Dennehey et al. May 1980 A
4227528 Wardlaw Oct 1980 A
4259276 Rawlings Mar 1981 A
4267836 Whitney et al. May 1981 A
4296786 Brignola Oct 1981 A
4315505 Crandall et al. Feb 1982 A
4333455 Bodicky Jun 1982 A
4334551 Pfister Jun 1982 A
D267199 Koenig Dec 1982 S
4378015 Wardlaw Mar 1983 A
4402407 Maly Sep 1983 A
4415393 Grimes Nov 1983 A
4417886 Frankhouser et al. Nov 1983 A
4464178 Dalton Aug 1984 A
4473369 Lueders et al. Sep 1984 A
4484910 Sarnoff et al. Nov 1984 A
4500312 McFarlane Feb 1985 A
4508367 Oreopoulos et al. Apr 1985 A
4525157 Vaillancourt Jun 1985 A
4530695 Phillips et al. Jul 1985 A
4531937 Yates Jul 1985 A
4543088 Bootman et al. Sep 1985 A
4563177 Kamen Jan 1986 A
4610469 Wolff-Mooij Sep 1986 A
4617019 Fecht Oct 1986 A
4713059 Bickelhaupt et al. Dec 1987 A
4734092 Millerd Mar 1988 A
4755173 Konopka et al. Jul 1988 A
4817603 Turner et al. Apr 1989 A
RE32922 Levin et al. May 1989 E
4838871 Luther Jun 1989 A
4840613 Balbierz Jun 1989 A
4850974 Bickelhaupt et al. Jul 1989 A
4850996 Cree Jul 1989 A
4863016 Fong et al. Sep 1989 A
4878897 Katzin Nov 1989 A
4890608 Steer Jan 1990 A
4894054 Miskinyar Jan 1990 A
4895570 Larkin Jan 1990 A
4917669 Bonaldo Apr 1990 A
4935010 Cox et al. Jun 1990 A
4950163 Zimble Aug 1990 A
4950252 Luther et al. Aug 1990 A
4956989 Nakajima Sep 1990 A
4970954 Weir et al. Nov 1990 A
4978338 Melsky et al. Dec 1990 A
4982842 Hollister Jan 1991 A
4986817 Code Jan 1991 A
4994042 Vadher Feb 1991 A
4994045 Ranford Feb 1991 A
5011475 Olson Apr 1991 A
5020665 Bruno Jun 1991 A
5024662 Menes et al. Jun 1991 A
5067496 Eisele Nov 1991 A
5092853 Couvertier, II Mar 1992 A
5098389 Cappucci Mar 1992 A
5112313 Sallee May 1992 A
5116319 Van den Haak May 1992 A
5116325 Paterson May 1992 A
5121751 Panalletta Jun 1992 A
5129884 Dysarz Jul 1992 A
5135502 Koenig, Jr. et al. Aug 1992 A
5137516 Rand et al. Aug 1992 A
5137524 Lynn et al. Aug 1992 A
5141496 Dalto et al. Aug 1992 A
5147375 Sullivan et al. Sep 1992 A
5160315 Heinecke et al. Nov 1992 A
5163915 Holleron Nov 1992 A
5172808 Bruno Dec 1992 A
5176643 Kramer et al. Jan 1993 A
5176650 Haining Jan 1993 A
5176662 Bartholomew et al. Jan 1993 A
5186712 Kelso et al. Feb 1993 A
5188611 Orgain Feb 1993 A
RE34223 Bonaldo Apr 1993 E
5205820 Kriesel Apr 1993 A
5222947 D'Amico Jun 1993 A
5232454 Hollister Aug 1993 A
5248301 Koenig et al. Sep 1993 A
5256149 Banik et al. Oct 1993 A
5256152 Marks Oct 1993 A
5257980 Van Antwerp et al. Nov 1993 A
5267963 Bachynsky Dec 1993 A
5269799 Daniel Dec 1993 A
5271744 Kramer et al. Dec 1993 A
5279558 Kriesel Jan 1994 A
5279579 D'Amico Jan 1994 A
5279591 Simon Jan 1994 A
5282793 Larson Feb 1994 A
5300030 Crossman et al. Apr 1994 A
5312359 Wallace May 1994 A
5312369 Arcusin et al. May 1994 A
5316246 Scott et al. May 1994 A
5324302 Crouse Jun 1994 A
5342319 Watson et al. Aug 1994 A
5342324 Tucker Aug 1994 A
5344007 Nakamura et al. Sep 1994 A
5350392 Purcell et al. Sep 1994 A
5354280 Haber et al. Oct 1994 A
5354337 Hoy Oct 1994 A
5366469 Steg et al. Nov 1994 A
5372592 Gambale Dec 1994 A
5372787 Ritter Dec 1994 A
5376082 Phelps Dec 1994 A
5379895 Foslien Jan 1995 A
5384174 Ward et al. Jan 1995 A
5387197 Smith et al. Feb 1995 A
5390669 Stuart et al. Feb 1995 A
5391151 Wilmot Feb 1995 A
5403288 Stanners Apr 1995 A
5405332 Opalek Apr 1995 A
5425715 Dalling et al. Jun 1995 A
5429607 McPhee Jul 1995 A
5429613 D'Amico Jul 1995 A
5439473 Jorgensen Aug 1995 A
D362718 Deily et al. Sep 1995 S
5449349 Sallee et al. Sep 1995 A
5451210 Kramer et al. Sep 1995 A
5478316 Bitdinger et al. Dec 1995 A
5490841 Landis Feb 1996 A
5501675 Erskine Mar 1996 A
5505709 Funderburk et al. Apr 1996 A
5507730 Haber et al. Apr 1996 A
5514117 Lynn May 1996 A
5520629 Heinecke et al. May 1996 A
5520654 Wahlberg May 1996 A
5522803 Teissen-Simony Jun 1996 A
5527287 Miskinyar et al. Jun 1996 A
5533974 Gaba Jul 1996 A
5540709 Ramel Jul 1996 A
5545143 Fischell Aug 1996 A
5545152 Funderburk et al. Aug 1996 A
5549577 Siegel et al. Aug 1996 A
5554130 McDonald et al. Sep 1996 A
5558650 McPhee Sep 1996 A
5562629 Haughton et al. Oct 1996 A
5562636 Utterberg Oct 1996 A
5573510 Isaacson Nov 1996 A
5575777 Cover et al. Nov 1996 A
5584813 Livingston et al. Dec 1996 A
5586553 Halili Dec 1996 A
5591188 Waisman Jan 1997 A
5599309 Marshall et al. Feb 1997 A
5599315 McPhee Feb 1997 A
5599318 Sweeney et al. Feb 1997 A
5628765 Morita May 1997 A
5643214 Marshall Jul 1997 A
5643216 White Jul 1997 A
5643220 Cosme Jul 1997 A
5658256 Shields Aug 1997 A
5662617 Odell et al. Sep 1997 A
5665071 Wyrick Sep 1997 A
5665075 Gyure et al. Sep 1997 A
5676156 Yoon Oct 1997 A
5681323 Arick Oct 1997 A
5695476 Harris Dec 1997 A
5697907 Gaba Dec 1997 A
5700250 Erskine Dec 1997 A
5702371 Bierman Dec 1997 A
5704920 Gyure Jan 1998 A
5709662 Olive et al. Jan 1998 A
5714225 Hansen et al. Feb 1998 A
5738641 Watson et al. Apr 1998 A
5741288 Rife Apr 1998 A
5752923 Terwilliger May 1998 A
5776103 Kriesel et al. Jul 1998 A
5807316 Teeple Sep 1998 A
5807348 Zinger et al. Sep 1998 A
5810835 Ryan et al. Sep 1998 A
5817058 Shaw Oct 1998 A
5820598 Gazza et al. Oct 1998 A
5827236 Takahashi Oct 1998 A
5833666 Davis et al. Nov 1998 A
5843001 Goldenberg Dec 1998 A
5848990 Cirelli et al. Dec 1998 A
5851197 Marano et al. Dec 1998 A
5858001 Tsals et al. Jan 1999 A
5865806 Howell Feb 1999 A
5899886 Cosme May 1999 A
5911705 Howell Jun 1999 A
5913846 Szabo Jun 1999 A
5916199 Miles Jun 1999 A
5919167 Mulhauser et al. Jul 1999 A
5919170 Woessner Jul 1999 A
5925032 Clements Jul 1999 A
5935109 Donnan Aug 1999 A
5947931 Bierman Sep 1999 A
5947935 Rinehart et al. Sep 1999 A
5951523 Osterlind et al. Sep 1999 A
5954643 VanAntwerp et al. Sep 1999 A
5957892 Thorne Sep 1999 A
5957897 Jeffrey Sep 1999 A
5968011 Larsen et al. Oct 1999 A
5971966 Lav Oct 1999 A
5975120 Novosel Nov 1999 A
5980488 Thorne Nov 1999 A
5980506 Mathiasen Nov 1999 A
5984224 Yang Nov 1999 A
5984897 Petersen et al. Nov 1999 A
D417733 Howell et al. Dec 1999 S
6017328 Fischell et al. Jan 2000 A
6017598 Kreischer et al. Jan 2000 A
D421119 Musgrave et al. Feb 2000 S
6024727 Thorne et al. Feb 2000 A
6039629 Mitchell Mar 2000 A
6042570 Bell et al. Mar 2000 A
6045533 Kriesel et al. Apr 2000 A
6045534 Jacobsen et al. Apr 2000 A
6050976 Thorne et al. Apr 2000 A
6053893 Bucher Apr 2000 A
6053930 Ruppert Apr 2000 A
6056718 Funderburk et al. May 2000 A
6056726 Isaacson May 2000 A
6074369 Sage et al. Jun 2000 A
6074371 Fischell Jun 2000 A
6077244 Botich et al. Jun 2000 A
6079432 Paradis Jun 2000 A
6086008 Gray et al. Jul 2000 A
6086575 Mejslov Jul 2000 A
6090068 Chanut Jul 2000 A
6093172 Funderburk et al. Jul 2000 A
6093179 O'Hara et al. Jul 2000 A
6099503 Stardella Aug 2000 A
6105218 Reekie Aug 2000 A
6106498 Friedli et al. Aug 2000 A
6120482 Szabo Sep 2000 A
6123690 Mejslov Sep 2000 A
6132755 Eicher et al. Oct 2000 A
6139534 Niedospial, Jr. Oct 2000 A
6159181 Crossman et al. Dec 2000 A
6183464 Sharp et al. Feb 2001 B1
6191338 Haller Feb 2001 B1
6193694 Bell et al. Feb 2001 B1
6210420 Mauze et al. Apr 2001 B1
6219574 Cormier et al. Apr 2001 B1
6221058 Kao et al. Apr 2001 B1
6248093 Moberg Jun 2001 B1
6261272 Gross et al. Jul 2001 B1
6283744 Edmondson et al. Sep 2001 B1
6293925 Safabash et al. Sep 2001 B1
6302866 Marggi Oct 2001 B1
6319232 Kashmer Nov 2001 B1
6322535 Hitchins et al. Nov 2001 B1
6322808 Trautman et al. Nov 2001 B1
6334856 Allen et al. Jan 2002 B1
6355021 Nielsen et al. Mar 2002 B1
6364113 Faasse et al. Apr 2002 B1
6378218 Sigwart et al. Apr 2002 B2
6379335 Rigon et al. Apr 2002 B1
6387076 Van Landuyt May 2002 B1
6387078 Gillespie, III May 2002 B1
6405876 Seshimoto et al. Jun 2002 B1
6440096 Lastovich et al. Aug 2002 B1
6447482 Rønborg et al. Sep 2002 B1
6450992 Cassidy, Jr. Sep 2002 B1
6485461 Mason et al. Nov 2002 B1
6488663 Steg Dec 2002 B1
6503222 Lo Jan 2003 B2
6517517 Farrugia et al. Feb 2003 B1
6520938 Funderburk et al. Feb 2003 B1
D472316 Douglas et al. Mar 2003 S
D472630 Douglas et al. Apr 2003 S
6572586 Wojcik Jun 2003 B1
6579267 Lynch et al. Jun 2003 B2
6582397 Alesi et al. Jun 2003 B2
6595962 Perthu Jul 2003 B1
6607509 Bobroff et al. Aug 2003 B2
6607511 Halseth et al. Aug 2003 B2
6613064 Rutynowski et al. Sep 2003 B2
6620133 Steck Sep 2003 B1
6620136 Pressly, Sr. et al. Sep 2003 B1
6620140 Metzger Sep 2003 B1
6629949 Douglas Oct 2003 B1
6645181 Gilad et al. Nov 2003 B1
6645182 Szabo Nov 2003 B1
6659982 Douglas et al. Dec 2003 B2
6685674 Douglas et al. Feb 2004 B2
6699218 Flaherty et al. Mar 2004 B2
6702779 Connelly et al. Mar 2004 B2
6726649 Swenson et al. Apr 2004 B2
6736797 Larsen et al. May 2004 B1
6743203 Pickhard Jun 2004 B1
6749587 Flaherty Jun 2004 B2
6749589 Douglas et al. Jun 2004 B1
6755805 Reid Jun 2004 B1
6776775 Mohammad Aug 2004 B1
6790199 Gianakos Sep 2004 B1
6805686 Fathallah et al. Oct 2004 B1
6808506 Lastovich et al. Oct 2004 B2
6811545 Vaillancourt Nov 2004 B2
6814720 Olsen et al. Nov 2004 B2
6824530 Wagner et al. Nov 2004 B2
6824531 Zecha, Jr. et al. Nov 2004 B1
6830562 Mogensen et al. Dec 2004 B2
6837877 Zurcher Jan 2005 B2
6837878 Smutney et al. Jan 2005 B2
6840922 Nielsen et al. Jan 2005 B2
6880701 Bergeron et al. Apr 2005 B2
6923791 Douglas Aug 2005 B2
6926694 Marano-Ford et al. Aug 2005 B2
6939324 Gonnelli et al. Sep 2005 B2
6939331 Ohshima Sep 2005 B2
6949084 Marggi et al. Sep 2005 B2
6959812 Reif et al. Nov 2005 B2
6960193 Rosenberg Nov 2005 B2
6979316 Rubin et al. Dec 2005 B1
6991619 Marano-Ford et al. Jan 2006 B2
6991620 Marano-Ford et al. Jan 2006 B2
6994213 Giard et al. Feb 2006 B2
6997907 Safabash et al. Feb 2006 B2
7014625 Bengtsson Mar 2006 B2
7018344 Bressler et al. Mar 2006 B2
7022108 Marano-Ford et al. Apr 2006 B2
7047070 Wilkenson et al. May 2006 B2
7052483 Wojcik May 2006 B2
7055713 Rea et al. Jun 2006 B2
7056302 Douglas Jun 2006 B2
7070580 Nielsen Jul 2006 B2
7074208 Pajunk et al. Jul 2006 B2
D526409 Nielsen et al. Aug 2006 S
7083592 Lastovich et al. Aug 2006 B2
7083597 Lynch et al. Aug 2006 B2
7097631 Trautman et al. Aug 2006 B2
7109878 Mann et al. Sep 2006 B2
7115108 Wilkenson et al. Oct 2006 B2
7115112 Mogensen et al. Oct 2006 B2
7137968 Burrell et al. Nov 2006 B1
7141023 Diermann et al. Nov 2006 B2
7147623 Mathiasen Dec 2006 B2
7186236 Gibson et al. Mar 2007 B2
7211068 Douglas May 2007 B2
7214207 Lynch et al. May 2007 B2
7214215 Heinzerling et al. May 2007 B2
7250037 Shermer et al. Jul 2007 B2
7258680 Mogensen et al. Aug 2007 B2
D554253 Kornerup Oct 2007 S
7303543 Maule et al. Dec 2007 B1
7309326 Fangrow, Jr. Dec 2007 B2
7322473 Fux Jan 2008 B2
7331939 Fangrow, Jr. Feb 2008 B2
7407491 Fangrow, Jr. Aug 2008 B2
7407493 Cane′ Aug 2008 B2
7431876 Mejlhede et al. Oct 2008 B2
7441655 Hoftman Oct 2008 B1
7569262 Szabo et al. Aug 2009 B2
7648494 Kornerup et al. Jan 2010 B2
7713258 Adams et al. May 2010 B2
7766867 Lynch et al. Aug 2010 B2
7846132 Gravesen et al. Dec 2010 B2
7850652 Liniger et al. Dec 2010 B2
8012126 Tipsmark et al. Sep 2011 B2
8087333 Oishi Jan 2012 B2
8123724 Gillespie, III Feb 2012 B2
8303549 Mejlhede et al. Nov 2012 B2
8323250 Chong et al. Dec 2012 B2
20010004970 Hollister et al. Jun 2001 A1
20010016714 Bell et al. Aug 2001 A1
20010021827 Ferguson et al. Sep 2001 A1
20010039387 Rutynowski et al. Nov 2001 A1
20010039401 Ferguson et al. Nov 2001 A1
20010041875 Higuchi et al. Nov 2001 A1
20010049496 Kirchhofer Dec 2001 A1
20010053889 Marggi Dec 2001 A1
20010056284 Purcell et al. Dec 2001 A1
20020022798 Connelly Feb 2002 A1
20020022855 Bobroff et al. Feb 2002 A1
20020026152 Bierman Feb 2002 A1
20020055711 Lavi et al. May 2002 A1
20020068904 Pluth et al. Jun 2002 A1
20020072720 Hague et al. Jun 2002 A1
20020074345 Scheider et al. Jun 2002 A1
20020077599 Wojcik Jun 2002 A1
20020082543 Park et al. Jun 2002 A1
20020107489 Lee Aug 2002 A1
20020111581 Sasso Aug 2002 A1
20020156424 Suzuki et al. Oct 2002 A1
20020156427 Suzuki et al. Oct 2002 A1
20020161322 Utterberg et al. Oct 2002 A1
20020161332 Ramey Oct 2002 A1
20020161386 Halseth et al. Oct 2002 A1
20020165493 Bierman Nov 2002 A1
20020169419 Steg Nov 2002 A1
20020173748 McConnell et al. Nov 2002 A1
20020173769 Gray et al. Nov 2002 A1
20020183688 Lastovich et al. Dec 2002 A1
20020189688 Roorda Dec 2002 A1
20020193737 Popovsky Dec 2002 A1
20020193744 Alesi et al. Dec 2002 A1
20030014018 Giambattista et al. Jan 2003 A1
20030060781 Mogensen et al. Mar 2003 A1
20030069548 Connelly et al. Apr 2003 A1
20030088238 Poulsen et al. May 2003 A1
20030105430 Lavi et al. Jun 2003 A1
20030109829 Mogensen et al. Jun 2003 A1
20030125669 Safabash et al. Jul 2003 A1
20030125678 Swenson et al. Jul 2003 A1
20030130619 Safabash et al. Jul 2003 A1
20030139704 Lin Jul 2003 A1
20030149405 Enns Aug 2003 A1
20030158520 Safabash et al. Aug 2003 A1
20030176843 Wilkinson Sep 2003 A1
20030176852 Lynch et al. Sep 2003 A1
20030181863 Davis et al. Sep 2003 A1
20030181868 Swenson Sep 2003 A1
20030181873 Swenson Sep 2003 A1
20030181874 Bressler et al. Sep 2003 A1
20030187394 Wilkinson et al. Oct 2003 A1
20030187395 Gabel Oct 2003 A1
20030199823 Bobroff et al. Oct 2003 A1
20030216686 Lynch et al. Nov 2003 A1
20030220610 Lastovich et al. Nov 2003 A1
20030225373 Bobroff et al. Dec 2003 A1
20030225374 Mathiasen Dec 2003 A1
20030229308 Tsals et al. Dec 2003 A1
20030229316 Hwang et al. Dec 2003 A1
20040002682 Kovelman et al. Jan 2004 A1
20040006316 Patton Jan 2004 A1
20040044306 Lynch et al. Mar 2004 A1
20040049159 Barrus et al. Mar 2004 A1
20040055711 Martin et al. Mar 2004 A1
20040059316 Smedegaard Mar 2004 A1
20040068231 Blondeau Apr 2004 A1
20040069044 Lavi et al. Apr 2004 A1
20040087913 Rogers et al. May 2004 A1
20040092865 Flaherty et al. May 2004 A1
20040092875 Kochamba May 2004 A1
20040111068 Swenson Jun 2004 A1
20040112781 Hofverberg et al. Jun 2004 A1
20040116865 Bengtsson Jun 2004 A1
20040133164 Funderburk et al. Jul 2004 A1
20040138612 Shermer et al. Jul 2004 A1
20040138620 Douglas et al. Jul 2004 A1
20040143216 Douglas et al. Jul 2004 A1
20040143218 Das Jul 2004 A1
20040158202 Jensen Aug 2004 A1
20040158207 Hunn et al. Aug 2004 A1
20040162518 Connelly et al. Aug 2004 A1
20040162521 Bengtsson Aug 2004 A1
20040171989 Horner et al. Sep 2004 A1
20040178098 Swenson et al. Sep 2004 A1
20040186446 Ohshima Sep 2004 A1
20040193143 Sauer Sep 2004 A1
20040199123 Nielsen Oct 2004 A1
20040204673 Flaherty et al. Oct 2004 A1
20040204687 Mogensen et al. Oct 2004 A1
20040204690 Yashiro et al. Oct 2004 A1
20040215151 Marshall et al. Oct 2004 A1
20040220528 Garcia, Jr. Nov 2004 A1
20040236284 Hoste et al. Nov 2004 A1
20040238392 Peterson et al. Dec 2004 A1
20040243065 McConnell et al. Dec 2004 A1
20040254433 Bandis Dec 2004 A1
20040260235 Douglas Dec 2004 A1
20040260250 Harris et al. Dec 2004 A1
20050035014 Cane Feb 2005 A1
20050038378 Lastovich et al. Feb 2005 A1
20050043687 Mogensen et al. Feb 2005 A1
20050049571 Lastovich et al. Mar 2005 A1
20050065466 Vedrine Mar 2005 A1
20050065472 Cindrich et al. Mar 2005 A1
20050075606 Botich et al. Apr 2005 A1
20050080386 Reid Apr 2005 A1
20050101910 Bowman et al. May 2005 A1
20050101912 Faust et al. May 2005 A1
20050101932 Cote et al. May 2005 A1
20050101933 Marrs et al. May 2005 A1
20050107743 Fangrow, Jr. May 2005 A1
20050113761 Faust et al. May 2005 A1
20050119611 Marano-Ford et al. Jun 2005 A1
20050119619 Haining Jun 2005 A1
20050119637 Lundgren et al. Jun 2005 A1
20050124936 Mogensen et al. Jun 2005 A1
20050131347 Marano-Ford et al. Jun 2005 A1
20050159709 Wilkinson Jul 2005 A1
20050159714 Gibson Jul 2005 A1
20050165382 Fulford Jul 2005 A1
20050192560 Walls et al. Sep 2005 A1
20050203461 Flaherty et al. Sep 2005 A1
20050215979 Kornerup et al. Sep 2005 A1
20050240154 Mogensen et al. Oct 2005 A1
20050251098 Wyss et al. Nov 2005 A1
20050256456 Marano-Ford et al. Nov 2005 A1
20050261629 Marano-Ford et al. Nov 2005 A1
20050277892 Chen Dec 2005 A1
20050283114 Bresina et al. Dec 2005 A1
20060015063 Butikofer et al. Jan 2006 A1
20060015076 Heinzerling et al. Jan 2006 A1
20060030815 Csincsura et al. Feb 2006 A1
20060036214 Mogensen Feb 2006 A1
20060041224 Jensen Feb 2006 A1
20060069351 Safabash et al. Mar 2006 A9
20060069382 Pedersen Mar 2006 A1
20060069383 Bogaerts et al. Mar 2006 A1
20060095003 Marano-Ford et al. May 2006 A1
20060095014 Ethelfeld May 2006 A1
20060106346 Sullivan et al. May 2006 A1
20060129123 Wojcik Jun 2006 A1
20060135908 Liniger et al. Jun 2006 A1
20060135913 Ethelfeld Jun 2006 A1
20060142698 Ethelfeld Jun 2006 A1
20060161108 Mogensen et al. Jul 2006 A1
20060173410 Moberg et al. Aug 2006 A1
20060173413 Fan Aug 2006 A1
20060184104 Cheney, II et al. Aug 2006 A1
20060184140 Okiyama Aug 2006 A1
20060200073 Radmer et al. Sep 2006 A1
20060247553 Diermann et al. Sep 2006 A1
20060241551 Lynch et al. Oct 2006 A1
20060247574 Maule et al. Nov 2006 A1
20060253085 Geismar et al. Nov 2006 A1
20060253086 Moberg et al. Nov 2006 A1
20060264835 Nielsen et al. Nov 2006 A1
20060264890 Moberg et al. Nov 2006 A1
20070005017 Alchas et al. Jan 2007 A1
20070016129 Liniger et al. Jan 2007 A1
20070016159 Sparholt et al. Jan 2007 A1
20070021729 Mogensen et al. Jan 2007 A1
20070049870 Gray et al. Jan 2007 A1
20070049865 Radmer et al. Mar 2007 A1
20070051784 Money et al. Mar 2007 A1
20070066955 Sparholt et al. Mar 2007 A1
20070066958 Wright Mar 2007 A1
20070088271 Richards et al. Apr 2007 A1
20070093754 Mogensen Apr 2007 A1
20070104596 Preuthun et al. May 2007 A1
20070112301 Preuthun et al. May 2007 A1
20070112303 Liniger May 2007 A1
20070129688 Scheider et al. Jun 2007 A1
20070129691 Sage, Jr. et al. Jun 2007 A1
20070173767 Lynch et al. Jul 2007 A1
20070191772 Wojcik Aug 2007 A1
20070191773 Wojcik Aug 2007 A1
20070203454 Shermer et al. Aug 2007 A1
20070185441 Fangrow, Jr. Sep 2007 A1
20070213673 Douglas Sep 2007 A1
20070179444 Causey et al. Oct 2007 A1
20070244448 Lastovich et al. Oct 2007 A1
20070282269 Carter Dec 2007 A1
20070299409 Whitbourne et al. Dec 2007 A1
20080004515 Jennewine Jan 2008 A1
20080058692 Propp et al. Mar 2008 A1
20080119707 Stafford May 2008 A1
20080200897 Hoss et al. Aug 2008 A1
20080269687 Chong et al. Oct 2008 A1
20080312601 Cane′ Dec 2008 A1
20090062767 Van Antwerp et al. Mar 2009 A1
20090118592 Klitgaard May 2009 A1
20090326456 Cross et al. Dec 2009 A1
20100004597 Gyrn et al. Jan 2010 A1
20100022956 Tipsmark et al. Jan 2010 A1
20100137829 Nielsen et al. Jun 2010 A1
20100228226 Nielsen Sep 2010 A1
20100262078 Blomquist Oct 2010 A1
20110028982 Lacy Feb 2011 A1
20110054399 Chong et al. Mar 2011 A1
Foreign Referenced Citations (206)
Number Date Country
4 342 329 Jun 1994 DE
196 31 921 Mar 1997 DE
299 05 072 Sep 1999 DE
101 17 285 Nov 2002 DE
203 20 207 Nov 2004 DE
0117632 Sep 1984 EP
0239244 Feb 1987 EP
0 272 530 Jun 1988 EP
0451040 Oct 1991 EP
0544837 Jun 1993 EP
0615768 Sep 1994 EP
0 652 027 May 1995 EP
0651662 May 1995 EP
0657184 Jun 1995 EP
0688232 Dec 1995 EP
0714631 Jun 1996 EP
0744183 Nov 1996 EP
0747006 Dec 1996 EP
0799626 Oct 1997 EP
0937475 Aug 1999 EP
0956879 Nov 1999 EP
2272559 Jan 2001 EP
1086718 Mar 2001 EP
1125593 Aug 2001 EP
0775501 Jun 2002 EP
1329233 Jul 2003 EP
1350537 Oct 2003 EP
1360970 Nov 2003 EP
1380315 Jan 2004 EP
1407747 Apr 2004 EP
1407793 Apr 2004 EP
1421968 May 2004 EP
1177802 Sep 2004 EP
1475113 Nov 2004 EP
1495775 Jan 2005 EP
1502613 Feb 2005 EP
1525873 Apr 2005 EP
1527792 May 2005 EP
1559442 Aug 2005 EP
1616594 Jan 2006 EP
1704889 Sep 2006 EP
1719537 Nov 2006 EP
1762259 Mar 2007 EP
1764125 Mar 2007 EP
1776980 Apr 2007 EP
1970091 Sep 2008 EP
2725902 Oct 1994 FR
2 752 164 Feb 1998 FR
906574 Sep 1962 GB
2 088 215 Jun 1982 GB
2 230 702 Oct 1990 GB
2 423 267 Aug 2006 GB
2 450 872 Jul 2007 GB
2 459 101 Oct 2009 GB
10179734 Aug 1991 JP
7051251 Nov 1995 JP
8187286 Jul 1996 JP
A-03-191965 Jul 1998 JP
2002-028246 Jan 2002 JP
2 238 111 Dec 2003 RU
933 100 Jun 1982 SU
WO 8101795 Jul 1981 WO
WO 8203558 Oct 1982 WO
WO 9204062 Mar 1992 WO
WO 9305840 Apr 1993 WO
WO 9311709 Jun 1993 WO
WO 9420160 Sep 1994 WO
WO 9519194 Jul 1995 WO
WO 9632981 Jul 1996 WO
WO 9620021 Oct 1996 WO
WO 9826835 Jun 1998 WO
WO 9833549 Aug 1998 WO
WO 9858693 Dec 1998 WO
WO 9907435 Feb 1999 WO
WO 9922789 May 1999 WO
WO 9933504 Jul 1999 WO
WO 0002614 Jan 2000 WO
WO 0003757 Jan 2000 WO
WO 0044324 Aug 2000 WO
WO 0112746 Feb 2001 WO
WO 0130419 May 2001 WO
WO 0168180 Sep 2001 WO
WO 0172353 Oct 2001 WO
WO 01076684 Oct 2001 WO
WO 0193926 Dec 2001 WO
WO 0202165 Jan 2002 WO
WO 0207804 Jan 2002 WO
WO 02040083 May 2002 WO
WO 02053220 Jul 2002 WO
WO 02081012 Oct 2002 WO
WO 02081013 Oct 2002 WO
WO 02083206 Oct 2002 WO
WO 02083228 Oct 2002 WO
WO 02094352 Nov 2002 WO
WO 02100457 Dec 2002 WO
WO 02102442 Dec 2002 WO
WO 02068014 Jan 2003 WO
WO 03015860 Feb 2003 WO
WO 03026728 Apr 2003 WO
WO 03068305 Aug 2003 WO
WO 03075980 Sep 2003 WO
WO 2003095003 Nov 2003 WO
WO 2004012796 Feb 2004 WO
WO 2004024219 Mar 2004 WO
WO 2004026375 Apr 2004 WO
WO 2004029457 Apr 2004 WO
WO 2004030726 Apr 2004 WO
WO 2004037325 May 2004 WO
WO 2004054644 Jul 2004 WO
WO 2004056412 Jul 2004 WO
WO 2004064593 Aug 2004 WO
WO 2004071308 Aug 2004 WO
WO 2004087240 Oct 2004 WO
WO 2004098683 Nov 2004 WO
WO 2004101016 Nov 2004 WO
WO 2004101071 Nov 2004 WO
WO 2004110527 Dec 2004 WO
WO 2005002649 Jan 2005 WO
WO 2005004973 Jan 2005 WO
WO 2005018703 Mar 2005 WO
WO 2005037184 Apr 2005 WO
WO 2005037350 Apr 2005 WO
WO 2005039673 May 2005 WO
WO 2005046780 May 2005 WO
WO 2005065748 Jul 2005 WO
WO 2005068006 Jul 2005 WO
WO 2005072795 Aug 2005 WO
WO 2005092410 Oct 2005 WO
WO 2005094920 Oct 2005 WO
WO 2005112800 Dec 2005 WO
WO 2005118055 Dec 2005 WO
WO 2006003130 Jan 2006 WO
WO 2006015507 Feb 2006 WO
WO 2006015600 Feb 2006 WO
WO 2006024650 Mar 2006 WO
WO 2006032689 Mar 2006 WO
WO 2006032692 Mar 2006 WO
WO 2006061027 Jun 2006 WO
WO 2006061354 Jun 2006 WO
WO 2006062680 Jun 2006 WO
WO 2006062912 Jun 2006 WO
WO 2006075016 Jul 2006 WO
WO 2006077262 Jul 2006 WO
WO 2006077263 Jul 2006 WO
WO 2006089958 Aug 2006 WO
WO 2006097111 Sep 2006 WO
WO 2006108775 Oct 2006 WO
WO 2006120253 Nov 2006 WO
WO 2006121921 Nov 2006 WO
WO 2006122048 Nov 2006 WO
WO 2007000162 Jan 2007 WO
WO 2007002523 Jan 2007 WO
WO 2007020090 Feb 2007 WO
WO 2007065944 Jun 2007 WO
WO 2007071255 Jun 2007 WO
WO 2007071258 Jun 2007 WO
WO 2007093051 Aug 2007 WO
WO 2007093182 Aug 2007 WO
WO 2007122207 Nov 2007 WO
WO 2007140631 Dec 2007 WO
WO 2007140783 Dec 2007 WO
WO 2007140785 Dec 2007 WO
WO 2007141210 Dec 2007 WO
WO 2008014791 Feb 2008 WO
WO 2008014792 Feb 2008 WO
WO 2008133702 Mar 2008 WO
WO 2008048631 Apr 2008 WO
WO 2008052545 May 2008 WO
WO 2008065646 Jun 2008 WO
WO 2008092782 Aug 2008 WO
WO 2008092958 Aug 2008 WO
WO 2008092959 Aug 2008 WO
WO 2008135098 Nov 2008 WO
WO 2008147600 Dec 2008 WO
WO 2008148714 Dec 2008 WO
WO 2008155145 Dec 2008 WO
WO 2008155377 Dec 2008 WO
WO 2009004026 Jan 2009 WO
WO 2009007287 Jan 2009 WO
WO 2009010396 Jan 2009 WO
WO 2009010399 Jan 2009 WO
WO 2009016635 Feb 2009 WO
WO 2009033032 Mar 2009 WO
WO 2009039013 Mar 2009 WO
WO 2009098291 Aug 2009 WO
WO 2009098306 Aug 2009 WO
WO 2009101130 Aug 2009 WO
WO 2009101145 Aug 2009 WO
WO 2009103759 Aug 2009 WO
WO 2009106517 Sep 2009 WO
WO 2009144272 Dec 2009 WO
WO 2010003885 Jan 2010 WO
WO 2010003886 Jan 2010 WO
WO 2010030602 Mar 2010 WO
WO 2010034830 Apr 2010 WO
WO 2010072664 Jul 2010 WO
WO 2010080715 Jul 2010 WO
WO 2010112521 Oct 2010 WO
WO 2011012465 Feb 2011 WO
WO 2011015659 Feb 2011 WO
WO 2011121023 Oct 2011 WO
WO 2012041784 Apr 2012 WO
WO 2012041923 Apr 2012 WO
WO 2012045667 Apr 2012 WO
WO 2012107440 Aug 2012 WO
WO 2012123274 Sep 2012 WO
Non-Patent Literature Citations (2)
Entry
International Search Report dated May 13, 2009 for International Application No. PCT/EP2009/051634.
“Why inset®?” inset® infusion set product overview. Printed from: http://web.archive.org/web/20040906102448/http://www.infusion-set.com/Default.asp?1D=108; 2 pages, © 2004, printed Jan. 9, 2008.
Related Publications (1)
Number Date Country
20110034883 A1 Feb 2011 US
Provisional Applications (1)
Number Date Country
61028259 Feb 2008 US