This application claims priority to Taiwanese Patent Application No. 105200110, filed on Jan. 6, 2016.
The disclosure relates to a container cap, and more particularly to a sealing cap to seal an opening of a container.
Referring to
As shown in
The conventional sealing cap is conveniently operable to removably seal the container 10. However, because the operator unit 14 and the resilient member 13 are centrally connected to the outer and inner caps 11, 121, the exerting force on the operator unit 14 and the urging force of the resilient member 13 may be localized at the center of the outer and inner caps 11, 121. In use, the conventional sealing cap may be subjected to an unbalanced force, which may cause the inner cap 121 to be oblique relative to the outer cap 11.
Therefore, an object of the disclosure is to provide a sealing cap that can be kept in a balanced position when being operated.
According to the disclosure, a sealing cap is to be removably attached to a container, and includes an outer cap, an inner cap, an air-tight gasket, a resilient unit and an operator unit.
The outer cap is configured to be disposed on the container.
The inner cap is movably connected beneath the outer cap.
The air-tight gasket is sleeved around the inner and outer caps.
The resilient unit includes two spaced-apart first resilient members abuttingly disposed between the outer and inner caps.
The operator unit includes two spaced-apart connectors that extend through the outer cap and that are connected to the inner cap, and an operator that is disposed above the outer cap and that is pivotally connected to the connectors. The operator is operable to move the inner cap relative to the outer cap between a pressurizing position, where the inner cap pressurizes the air-tight gasket against the container, and an unpressurizing position, where the inner cap unpressurizes the air-tight gasket against the container.
Other features and advantages of the disclosure will become apparent in the following detailed description of the embodiment with reference to the accompanying drawings, of which:
Referring to
In this embodiment, the outer cap 3 is square-shaped and configured to be disposed on the container 2. The outer cap 3 includes an outer cap peripheral wall 31, an outer cap mounting plate 32 that is disposed transversely inside and connected to the outer cap peripheral wall 31 and that has two spaced-apart through holes 323, and a central positioning hole 33 disposed between the through holes 323. The outer cap peripheral wall 31 has an annular shoulder portion 311 facing downward and abutting against the top end of the container 2, and an annular neck portion 312 extending downward from an inner end of the annular shoulder portion 311. In addition, the outer cap mounting plate is a stepped structure and has a U-shaped non-thickened part 321, a U-shaped thickened part 322, and an indented receiving space 34 which is formed above the non-thickened part 321 within the outer cap peripheral wall 31. The U-shaped non-thickened and thickened parts 321, 322 cooperatively form a square loop that surrounds the central positioning hole 323. The through holes 323 are symmetrically and diametrically opposite to each other with respect to the center of the central positioning hole 33, and are formed in the non-thickened part 321 adjacent the shoulder surfaces of the thickened part 322.
The air-tight gasket 42 is sleeved around the inner cap 41. In this embodiment, the inner cap 41 has an inner cap base wall 412, a central protruding portion 411, four corner walls 413, two diametrically opposite engagement members 417 and two spring seats 418. The inner cap base wall 412 has a positioning recess 414 extending annularly along a periphery of the inner cap base wall 412 to receive and position one end of the air-tight gasket 42 therein. The central protruding portion 411 projects from the inner cap base wall 412 into the central positioning hole 33. The corner walls 413 project respectively and upwardly from four corners of the inner cap base wall 412.
The inner cap 41 is movably connected beneath the outer cap 3. In particular, the annular neck portion 312 of the outer cap 3 is slidably sleeved around the corner walls 413 of the inner cap 41 such that the inner cap 41 is movable upward or downward relative to the outer cap 3. A portion of the air-tight gasket 42 extends around the annular neck portion 312 of the outer cap 3.
The diametrically opposite engagement members 417 and the spring seats 418 project from the inner cap base wall 412 respectively at four sides of the central protruding portion 411. The spring seats 418 are opposite to each other along a first diametrical line 43 with respect to the center of the central protruding portion 411, or the center of the inner cap base wall 412. The engagement members 417 are opposite to each other along a second diametrical line 44 perpendicular to the first diametrical line 43. The engagement members 417 and the spring seats 418 are arranged angularly around the central protruding portion 411. In this embodiment, each of the engagement members 417 has two spaced-apart engagement holes 419 aligned with each other along the second diametrical line 44.
The resilient unit 5 includes two spaced-apart first resilient members 51 respectively sleeved on the engagement members 417 and abuttingly disposed between the outer and inner caps 3, 41, and two second resilient members 52 respectively sleeved on the spring seats 418 and abuttingly disposed between the outer and inner caps 3, 41. As such, the first resilient members 51 are symmetrically and angularly spaced apart from the second resilient members 52 in an equidistant manner.
The operator unit 6 includes two spaced-apart connectors 62 that extend through the outer cap 3 and that are connected to the inner cap 41, and an operator 61 that is disposed above the outer cap 3 and that is pivotally connected to the connectors 62.
The connectors 62 respectively extend through the through holes 323 and are respectively disposed at two diametrically opposite positions with respect to a center of the inner cap 41. Each connector 62 has a connector portion 621 that extend through a respective one of the through holes 323 and that is engaged with a respective one of the engagement members 417. In this embodiment, the connector portion 621 has two spaced-apart barbs 622 engaged respectively with the engagement holes 419 of the respective one of the engagement members 417.
The operator 61 is U-shaped, and has two spaced-apart pivot arms 611 respectively connected to the connectors 62, and an intermediate portion 612 bridging the pivot arms 611. Each pivot arm 611 has an abutting first surface 614, an abutting second surface 615 transverse to the first surface 614, a pivot recess 613 transversely extending through the first surface 614 and pivotally receiving a corresponding one of the connectors 62, and a pivot pin 63 pivotally connecting one of the pivot arms 611 to the corresponding one of the connectors 62. The first surface 614 has a first distance (H1) from the pivot pin 63. The second surface 615 has a second distance (H2) from the pivot pin 63. The first distance (H1) is greater than the second distance (H2).
The operator 61 is operable to move the inner cap 41 relative to the outer cap 3 between a pressurizing position, where the inner cap 41 pressurizes the air-tight gasket 42 against the container 2, and an unpressurizing position, where the inner cap 41 unpressurizes the air-tight gasket 42 against the container 2.
As shown in
Referring to
As described hereinbefore, when the inner cap 41 is moved relative to the outer cap 3 between the pressuring and unpressurizing positions, since the first and second resilient members 51, 52 are subjected to different levels of compression force between the outer and inner caps 3, 41, a distance between the outer and inner caps 3, 41 is changed. During the change in distance between the outer and inner caps 3, 41, since the first and second resilient members 51, 52 are symmetrically disposed and equidistantly spaced apart from each other with respect to the central protruding portion 411 of the inner cap 41, and since connectors 62 are symmetrically connected to the inner cap 41 and are respectively limited by the through holes 323 of the outer cap 3, the forces exerted on the outer and inner caps 3, 41 can be uniformed, and the relative movement of the outer and inner caps 3, 41 can be symmetrical. Therefore, the inner cap 41 may be prevented from tilting relative to the outer cap 3. As such, the sealing cap of the present disclosure is able to provide the inner cap 41 with a balancing force that uniformly pressurizes the air-tight gasket 42 to effectively seal the container 2.
In the description above, for the purposes of explanation, numerous specific details have been set forth in order to provide a thorough understanding of the embodiment. It will be apparent, however, to one skilled in the art, that one or more other embodiments may be practiced without some of these specific details. It should also be appreciated that reference throughout this specification to “one embodiment,” “an embodiment,” an embodiment with an indication of an ordinal number and so forth means that a particular feature, structure, or characteristic may be included in the practice of the disclosure. It should be further appreciated that in the description, various features are sometimes grouped together in a single embodiment, figure, or description thereof for the purpose of streamlining the disclosure and aiding in the understanding of various inventive aspects.
While the disclosure has been described in connection with what is considered the exemplary embodiment, it is understood that this disclosure is not limited to the disclosed embodiment but is intended to cover various arrangements included within the spirit and scope of the broadest interpretation so as to encompass all such modifications and equivalent arrangements.
Number | Date | Country | Kind |
---|---|---|---|
105200110 U | Jan 2016 | TW | national |
Number | Name | Date | Kind |
---|---|---|---|
283588 | Finsterer | Aug 1883 | A |
326641 | Guptill | Sep 1885 | A |
634240 | Hoyt | Oct 1899 | A |
6170690 | Hosoi | Jan 2001 | B1 |
20070241107 | Matsumoto | Oct 2007 | A1 |
20080179274 | Cheng | Jul 2008 | A1 |
Number | Date | Country | |
---|---|---|---|
20170190479 A1 | Jul 2017 | US |