The present invention relates generally to the field of surgical devices and more particularly to surgical devices and methods for sealing perforations in body organs or vessels.
An ever increasing number of diagnostic and interventional surgical procedures are performed using catheters introduced into the body at one or a few entry sites. By limiting the number and size of incisions, patients are able to recover more quickly and with less discomfort. With the wide range of catheters at their disposal, surgeons can operate or perform diagnostics on a great number of bodily systems, including but not limited to the vascular, nervous, and reproductive systems. Following these procedures the catheters and various accessories are removed, leaving one or more puncture sites which must be closed. These sites are often difficult to suture because they are on internal tissues or organs, are located on arterial walls below the skin, or are only accessible by a catheter. The present invention relates to procedures in which physicians do not have direct access to the tissue surrounding an opening in arterial walls or other biological tissue walls using suture.
As an example of the type of puncture closing that is problematic, consider interluminal procedures performed on the vascular system, such as an angiogram or angioplasty. The skin is punctured through to the femoral artery, and an introducer sheath is placed in the puncture. For interluminal vascular procedures, the introducer sheath is a tube having a lumen and an outer diameter in the range of 2 mm (6 F on the french catheter scale) to 15 mm (45 F) or more. Catheters are inserted through the introducer sheath and threaded towards the heart or other vascular site of interest. At the conclusion of the procedure, the catheter is removed, followed by the removal of the introducer sheath. Bleeding at the puncture site has conventionally been controlled by the use of manual compress upstream from the puncture site. Achieving homeostasis with manual compression, however, is time consuming and can result in complications. Generally, compression must be applied for one-half hour or more to achieve hemostasis. If anticoagulants are used, it may take an additional 2 to 4 hours for the effects of the anticoagulants to wear off and for compression to be effective. Direct complications from manual compression include occlusion of underlying blood vessels, which can lead to ischemia and/or thrombosis. In general, the problems and patient discomfort increase with introducer sheath size and the use of anticoagulants.
Various attempts to achieve hemostasis without the problems associated with manual compression have been made. Many of the attempts involved facilitating vessel closure using tools compatible with ancillary devices used with catheter procedures. Complicated remote controlled mechanisms for suturing are inserted through the introducer sheath following catheter removal, for example. These attempts have included the use of collagen plugs to seal the puncture, the use of complicated, remote controlled mechanisms for suturing, the application of fasteners such as hooks, clips, or staples applied from the exterior of an artery. While each of these devices can be used for closing a puncture more rapidly than manual compression, other problems can result from their use. For example, suturing devices may require many cooperating moving parts to pass the suture from one side of the artery to the other, as well as knot pushers for pushing knotted sutures or mechanisms for knot tying. Collagen plugs do not avoid all blood loss, and may increase the risk of thrombosis formation and the development of an inflammatory autoimmune reaction. Closing punctures using fasteners often involves the use of excessive force in the area surrounding their application, which can cut off or greatly reduce blood flow to the adjacent areas. This can cause ischemia and impair the healing process.
In addition many locations where closing is required are not easily visible, resulting in difficulty in placing the fastener, collagen plug, or any of the other devices described above.
Minimally invasive surgery, especially minimally invasive surgery using robotic techniques, presents further problems for known fastening techniques. In minimally invasive surgery, the surgeon has access to the body through small openings and often must work in restricted spaces or cavities. However, many known techniques are not compatible with minimally invasive techniques.
For procedures where incisions or punctures are internal to the body or percutaneous, the conventional hemostasis methods of choice are sutures and fasteners, which are usually staples. It is important that the puncture closing device work rapidly and accurately, and that it does not subject the vessels (e.g., arteries) to any undue force. The use of any of the available devices or methods can result in problems and lead to complications with the surgical procedure, which can delay patient recovery or jeopardize the patient's health. Therefore, there is a need for improved devices and methods for closing punctures or other openings in bodily tissue or organs following surgery.
The present invention involves methods and apparatus for closing and/or sealing tissue openings that overcome disadvantages of the prior art. The invention is particularly useful for closing and/or sealing tissue openings in situations where access to the opening is limited, such as in minimally invasive surgery.
According to one embodiment of the invention, a surgical clip is provided comprising an elongated member and a pair of biasing mechanisms coupled to the member, the elongated member comprising shape memory material and having a memory set closed configuration from which it is moveable to a plurality of open configurations, the biasing mechanisms being selectively adjustable to bias the clip toward any of the plurality of open configurations. With this construction, the clip can be introduced through an opening in tissue and expanded so that its ends are directed toward the inner surface of the tissue adjacent the opening and pulled therethrough. After the clip is pulled through the tissue surrounding the opening so that the clip bridges the opening, the tissue and/or clip can be manipulated so that the tissue slides along the clip to the central region of the clip, thereby approximating the tissue edges surrounding the opening. The ability to apply the fastener from the interior area of the tissue to the exterior area of the tissue without sutures and accompanying knot tying steps is advantageous. The clip can then be allowed to return toward its memory set configuration where it can hold the tissue edges together and seal the opening. Further, the biasing mechanisms can be symmetrically arranged about the elongated member. This can enhance the ability to accurately position the clip ends beneath the tissue adjacent the opening.
According to another embodiment of the invention, a surgical clip is provided comprising an elongated member and a pair of biasing mechanisms coupled to the member, the elongated member comprising shape memory material and having a memory set closed configuration from which it is moveable to a plurality of open configurations, the biasing mechanisms being selectively adjustable to bias the clip toward any of the plurality of open configurations, each biasing mechanism comprising a biasing member and an actuator, each biasing member adapted to apply a biasing force to the elongated member to urge the elongated member away from the closed configuration, and each actuator being coupled to one of the biasing members and adapted to activate the biasing member to apply the biasing force to the elongated member.
According to another embodiment of the invention, a surgical clip is provided comprising an elongated member and a pair of biasing mechanisms coupled to the member, the elongated member comprising shape memory material and having a memory set closed configuration from which it is moveable to a plurality of open configurations, the biasing mechanisms being selectively adjustable to bias the clip toward any of the plurality of open configurations, the elongated member further having two tissue piercing members secured to and engaging said elongated member and extending therefrom.
According to another embodiment of the invention, a surgical clip is provided comprising an elongated member and a pair of biasing mechanisms coupled to the member, the elongated member comprising shape memory material and having a memory set closed configuration from which it is moveable to a plurality of open configurations, the biasing mechanisms being selectively adjustable to bias the clip toward any of the plurality of open configurations, the elongated member further having two tissue piercing members integrally formed therewith.
According to another embodiment of the invention, a delivery mechanism is provided to deliver the clip through a tissue opening, open the clip, move the clip through tissue adjacent the opening so that the clip bridges the opening and the tissue edges surrounding the opening can be approximated, and release the clip. In addition, the delivery apparatus may optionally remove piercing members at the clip ends. In one variation, a surgical clip delivery apparatus is provided for delivering a surgical clip comprising an elongated member and a pair of biasing mechanisms coupled to the member, the elongated member comprising shape memory material and having a memory set closed configuration from which it is moveable to a plurality of open configurations, the biasing mechanisms being selectively adjustable to bias the clip toward any of the plurality of open configurations, each biasing mechanism comprising a biasing member and an actuator, each biasing member adapted to apply a biasing force to the elongated member to urge the elongated member away from the closed configuration, and each actuator being coupled to one of the biasing members and adapted to activate the biasing member to apply the biasing force to the elongated member, the apparatus comprising a body member having an opening adapted to allow the surgical clip to pass therethrough for release thereof; a clip holder disposed in the body member and adapted to releasably hold the surgical clip; and a controller having multiple actuator engaging surfaces disposed in the body member, the multiple surfaces configured to engage the clip actuators to adjust the force that the biasing member applies to the clip.
According to another embodiment of the invention, a surgical system is provided for closing an opening in tissue, the system comprising a self-closing clip, a body member, a clip holder, and a controller; the self-closing clip comprising an elongated member and a pair of biasing mechanisms coupled to the member, the elongated member comprising shape memory material and having a memory set closed configuration from which it is moveable to a plurality of open configurations, the biasing mechanisms being selectively adjustable to bias the clip toward any of the plurality of open configurations, each biasing mechanism comprising a biasing member and an actuator, each biasing member adapted to apply a biasing force to the elongated member to urge the elongated member away from the closed configuration, and each actuator being coupled to one of the biasing members and adapted to activate the biasing member to apply the biasing force to the elongated member; the body member having an opening adapted to allow said surgical clip to pass therethrough for release thereof; the clip holder disposed in said body member and adapted to releasably hold said surgical clip; and the controller having multiple actuator engaging surfaces disposed in said body member, said multiple surfaces configured to engage said clip actuators to adjust the force that the biasing member applies to said clip.
According to another embodiment of the invention, a surgical system is provided for closing an opening in tissue comprising and elongated body member and a surgical clip; the elongated body member having a proximal end and a distal end adapted for introduction into a tissue opening, the elongated body member further having an opening therein; and the surgical clip having ends, an open configuration and a closed configuration, the surgical clip being releasably coupled to the elongated body member and arranged so that when in said open configuration the clip ends extend from the body member opening at diametrically opposed portions of the body member and generally point toward the proximal end of the body member so that when the body member is introduced into the tissue opening and the surgical clip moved to the open configuration, the ends of the surgical clip can penetrate the tissue adjacent the opening therein when the body member is retracted.
According to another embodiment of the invention, a method is provided for closing an opening in tissue having an outer surface and an inner surface comprising introducing a self-closing clip, which has ends, an open configuration and a memory set closed configuration, through the opening; positioning the self-closing clip in an open configuration with the ends directed toward the inner surface of the tissue; passing the ends through the tissue adjacent to the opening; closing the opening; and allowing the self-closing clip to return toward its closed configuration.
The above is a brief description of some deficiencies in the prior art and advantages of the present invention. Other features, advantages, and embodiments of the invention will be apparent to those skilled in the art from the following description and accompanying drawings, wherein, for purposes of illustration only, specific forms of the invention are set forth in detail.
Before the present invention is described, it is to be understood that this invention is not limited to the particular embodiments or examples described, as such may, of course, vary. Further, when referring to the drawings, like numerals indicate like elements.
The present invention provides an apparatus and method for sealing punctures or other openings in bodily tissues and is both effective and compatible with many of the tools and techniques employed in minimally invasive surgery. Although the invention will be described in connection with sealing percutaneous punctures to the femoral artery or to the aorta following bypass surgery as an aid in achieving hemostasis, it should be understood that it has other applications. It may be used or adapted to be used on other bodily tissues or organs to facilitate hemostasis of other types of wounds, openings or punctures as would be apparent to those skilled in the art.
According to one aspect of the invention, a surgical fastener or clip, such as a self-closing clip, is introduced through a tissue opening, which can be made percutaneaously or by other known means such as minimally invasive means, positioned below the opening, and manipulated to pass through the tissue edges surrounding the opening where the tissue edges are then brought together along the clip. The clip is then closed to hold the tissue edges of the opening together.
Referring to
The illustrative diagrammatic example shows artery A having an arterial lumen or interior I and an arterial wall W with a perforation or opening O to be closed. The opening O may be a percutaneous opening formed in an artery A, where the opening has been made through the skin and tissue (not shown) surrounding the artery. Alternatively, the surgeon can incise the artery to form the opening as part of a minimally invasive surgical procedure or other procedure where access to the opening is limited. Returning to the figures, Clip 10 is shown with two ends and piercing members 12 removably attached thereto. Further, clip 10 can be arranged in at least two configurations: an open configuration 20 (
According to another aspect of the invention, clip delivery apparatus can be provided to facilitate the placement and/or closure of the clip. For example, such a delivery apparatus can be provided to hold clip 10 to introduce it to the site of opening O either through the interior I along artery A, or through the opening O. The delivery apparatus can, for example, deliver the clip through the opening when closing a puncture following minimally invasive procedures. In such a procedure, access to the body interior is achieved by maintaining a tissue opening through the placement of a cannula or sheath through a tissue puncture. During the procedure, various catheters and other instruments are placed through the cannula or sheath. At the conclusion of the procedure, the instruments and cannula or sheath are withdrawn, and the puncture is then closed. In many instances, the puncture is percutaneous or has otherwise restricted access. Thus, use of a clip delivery apparatus that can be inserted into the puncture prior to cannula removal and that can seal the opening after cannula removal is compatible with minimally invasive procedures.
Referring to
A slot 307 bisects a distal portion of sheath 301 in a longitudinal direction and extends along diametrically opposed portions or sides of the distal end portion of the sheath. Delivery apparatus 300 provides for the delivery of a clip through slot 307 through actuation of inner knob 306 and/or outer knob 304. Outer knob 304 is connected to sheath 301 near proximal end 309 by, for example, welding or gluing, or it is formed therewith so that outer knob 304 can be used to axially translate or rotate sheath 301 along or about inner member 303. Inner knob 306 is connected to inner member 303 such as by welding or gluing, or it can be formed therewith. In turn, the distal end of inner member 303 is coupled to a clip holding and release mechanism or it can form part of such a mechanism. The clip holding and release mechanism facilitates delivering a clip to a target site and deploying it. One clip holding and release mechanism is shown in
Delivery apparatus 300 has a generally cylindrical shape that terminates in a curved or blunt distal end portion. This shape facilitates the use of the device to remotely place clips through surgical openings in a body and release the clips from distal end 305. Although slot 307 is shown bisecting sheath 301, other configuration that allow the clip to pass therethrough with the open ends of the clip sufficiently spaced to bridge the opening can be used.
One embodiment of a clip constructed in accordance with the present invention and suitable for use with clip delivery apparatus 300 (or clip delivery apparatus 900 described below) is illustrated in
In general, clip 410 comprises a shape memory member 401, which can have a closed memory set configuration as shown for example in
According to one embodiment, clip member 401 comprises a deformable wire 401 made of shape memory alloy or superelastic material. A nickel titanium (nitinol) based alloy may be used, for example. The nitinol may include additional elements which affect the yield strength of the material or the temperature at which particular pseudoelastic or shape transformation characteristics occur. The transformation temperature may be defined as the temperature at which a shape memory alloy finishes transforming from martensite to austenite upon heating (i.e., Af temperature). The shape memory alloy preferably exhibits pseudoelastic (superelastic) behavior when deformed at a temperature slightly above its transformation temperature. At least a portion of the shape memory alloy is converted from its austenitic phase to its martensitic phase when the wire is in its deformed configuration. As the stress is removed, the material undergoes a martensitic to austenitic conversion and springs back to its original undeformed configuration.
When clip 410 is positioned in tissue and allowed to return toward its closed state, a residual stress is present in member 401 to maintain the tissue tightly together. In order for the pseudoelastic member or wire 401 to retain sufficient compression force in this configuration, it should not be stressed past its yield point in its deformed delivery or open configuration to allow full tendency toward its undeformed configuration. The shape memory alloy can be selected so as to be suitable with the application. For example, it can be selected with a transformation temperature suitable for use with a stopped heart condition where cold cardioplegia has been injected for temporary paralysis of the heart tissue (e.g., temperatures as low as 8-10 degrees Celsius).
It is to be understood that the shape memory alloy may also be heat activated, or a combination of heat activation and pseudoelastic properties may be used, as is well known by those skilled in the art.
The cross-sectional diameter of the member or wire 401 and the length of member 401 will vary depending on the specific application. The diameter of member or wire 401 may be, for example, between about 0.001 and 0.015 inch. For percutaneous vascular applications, the diameter is preferably between about 0.001 and 0.008 inch with a diameter “D” of the loop of member 401 with coils 407 thereon is between about 0.0125 and 0.0875 inch (
The wire (e.g., wire 401) may be formed in the shape illustrated in
Returning to
Referring to
Coils 407 and rings or disks 409 are adapted and/or arranged to slide along clip member 401 while transmitting a biasing force to clip member ends 403. This can be seen in the cross-sectional details shown in
Returning to
Three clip configurations and a schematic representation of the bias forces are shown in
Referring to
Referring to
Referring to
According to another aspect of the invention, a clip holding and release mechanism is provided. The holding and release mechanism enables one to hold the clip and introduce the clip through a tissue opening, pass the clip through tissue adjacent the opening from the inner surface the tissue to the outer surface of the tissue, and to release the clip so as to allow the clip to return toward its closed configuration. The holding and release mechanism can be constructed to provide an infinite number of clip positions between the aforementioned open and closed configurations.
Referring to
Referring to
Body member or controller 620 also has distally arranged or located sloped surfaces 625, which generally form a tapered section in the distal direction and through which slot 623 extends, and proximally arranged or located parallel surfaces 627 into which slot 623 also extends. Surfaces 625 and 627 provide a mechanism to apply force against the biasing mechanisms of the clip or control the movement of biasing member actuators 409 and move the clip toward an open or closed configuration as will be described in more detail below with reference to
Clip holder 611 comprises a spring clamp having arms which curve toward one another at the clip holder distal end 602. When the clip holder distal end is closed, it holds the clip as shown in
When loading clip delivery apparatus 300 with a clip, clip holder 611 is moved proximally until the clamp arms of clip holder 611 are sufficiently spaced to allow a clip, such as clip 510, to pass therethrough (see e.g.,
An exemplary description of the operation of apparatus 300 will be made with reference to
Referring to
With clip 510 in the open configuration as shown in
For some types of tissue, the clip piercing members 501 may be left in place. Examples of tissue which may not be sensitive to retaining a piercing member include stomach, bowel or colon tissue. For other types of tissue, such as coronary, aorta or other blood-carrying tissue, it may be preferable, though not necessary, to remove the piercing members for various reasons including to promote healing of the puncture site, to prevent further piercing of the tissue, or to reduce the likelihood of irritation of the tissue. In the foregoing example, which involves closure of an opening in a femoral artery, the piercing members 501 can be removed from the clip by cutting, or they can be removed by pulling the piercing members 501 off the clip when a releasably mounted piecing member configuration is used such as that shown in
Referring to
Delivery apparatus 900 extends from a proximal end 909 to a distal end 905, and includes a sheath or tubular outer member 901 having an outer knob 904 near the proximal end, and an inner member 903 (which can be a solid or tubular rod) extending substantially along the length of the delivery apparatus and having an inner knob 906 secured thereto or formed therewith at the proximal end of the apparatus.
A slot 907, which is the same as slot 307, bisects a distal portion of sheath 901 in a longitudinal direction and extends along diametrically opposed portions or sides of the distal end portion of the sheath. Delivery apparatus 900 provides for the delivery of a clip through slot 907 through actuation of inner knob 906 and/or outer knob 904 as discussed above in connection with delivery apparatus 300. Specifically, outer knob 904 is connected to sheath 901 near proximal end 909 by, for example, welding or gluing or it is formed therewith so that outer knob 904 can be used to axially translate or rotate sheath 901 along or about inner member 903. Inner knob 906 is connected to inner member 903 such as by welding or gluing. In turn, the distal end of inner member 903 is coupled to a clip holding and release mechanism or it can form part of such a mechanism such as the clip holding and release mechanism described above with reference to
Delivery apparatus 900 has a generally cylindrical shape that terminates in a curved or blunt distal end portion like delivery apparatus 300. This shape facilitates the use of the device to remotely place clips through surgical openings in a body and release the clips from distal end 905.
In addition, clip delivery apparatus 900 includes a pair of piercing member removal mechanisms and actuators for actuating the removal mechanisms, which are generally indicated with reference numeral 910. Each piercing member removal mechanism 910 includes a pair of support members 917 and piercing member intercepting or restraining portions 919, which in the illustrative embodiment are provided at or secured to the distal end of the support members. Support members 917 can have any suitable shape for providing a support or base for intercepting portions 919. For example, each support member 917 can be a flat elongated member or it can have a semi-circular, crescent, rectangular, square, or other transverse cross-sectional shape. The proximal ends of support members 917 are connected to arms or rods 913, which extend proximally beside member 303 and connect to plunger arms 911. Alternatively, arms 913 and plunger arms 911 can be integrally formed. Plunger arms 911 extend through diametrically opposed slots, which are formed in sheath 901 and extend in a longitudinal direction sufficiently to allow plunger arms 911 to move between two positions. In the proximal most position, plunger arms are in a fully retracted, proximal position as shown in dashed line and the removal mechanisms 910 are retracted through openings in sheath 901. In the distal most position, plunger arms are in the position shown in
Referring to
Referring to
Referring to
Intercepting portions 919 can have various configurations. Referring to
Variations and modifications of the devices and methods disclosed herein will be readily apparent to persons skilled in the art. As such, it should be understood that the foregoing detailed description and the accompanying illustrations are made for purposes of clarity and understanding, and are not intended to limit the scope of the invention, which is defined by the claims appended hereto. Further, all publications, patents, and patent applications cited herein are hereby incorporated by reference in their entirety for all purposes.
This application is a divisional of U.S. patent application Ser. No. 10/627,168, filed Jul. 25, 2003 now U.S. Pat. No. 7,182,769.
Number | Name | Date | Kind |
---|---|---|---|
43098 | Cooper | Jun 1864 | A |
636728 | Kindel | Nov 1899 | A |
655190 | Bramson | Aug 1900 | A |
1087186 | Scholfield | Feb 1914 | A |
1167014 | O'Brien | Jan 1916 | A |
1539221 | John | May 1925 | A |
1583271 | Biro | May 1926 | A |
1625602 | Gould et al. | Apr 1927 | A |
1867624 | Hoffman | Jul 1932 | A |
2201610 | Dawson | May 1940 | A |
2240330 | Flagg et al. | Apr 1941 | A |
2256382 | Dole | Sep 1941 | A |
2264679 | Ravel | Dec 1941 | A |
2413142 | Jones et al. | Dec 1946 | A |
2430293 | Howells | Nov 1947 | A |
2505358 | Gusberg et al. | Apr 1950 | A |
2516710 | Mascolo | Jul 1950 | A |
2715486 | Marcoff-Moghadam | Aug 1955 | A |
2890519 | Storz, Jr. | Jun 1959 | A |
2940452 | Smialowski | Jun 1960 | A |
3055689 | Jorgensen | Sep 1962 | A |
3057355 | Smialowski | Oct 1962 | A |
3082426 | Miles | Mar 1963 | A |
3143742 | Cromie | Aug 1964 | A |
3150379 | Brown | Sep 1964 | A |
3180337 | Smialowski | Apr 1965 | A |
3249104 | Hohnstein | May 1966 | A |
3274658 | Pile | Sep 1966 | A |
3452742 | Muller | Jul 1969 | A |
3506012 | Brown | Apr 1970 | A |
3509882 | Blake | May 1970 | A |
3547103 | Cook | Dec 1970 | A |
3570497 | Lemole | Mar 1971 | A |
3608095 | Barry | Sep 1971 | A |
3638654 | Akuba | Feb 1972 | A |
3656185 | Carpentier | Apr 1972 | A |
RE27391 | Merser | Jun 1972 | E |
3753438 | Wood et al. | Aug 1973 | A |
3776237 | Hill et al. | Dec 1973 | A |
3802438 | Wolvek | Apr 1974 | A |
3825009 | Williams | Jul 1974 | A |
3837345 | Matar | Sep 1974 | A |
3874388 | King et al. | Apr 1975 | A |
3875648 | Bone | Apr 1975 | A |
3905403 | Smith et al. | Sep 1975 | A |
3908662 | Razgulov et al. | Sep 1975 | A |
3910281 | Kletschka et al. | Oct 1975 | A |
3958576 | Komiya | May 1976 | A |
3976079 | Samuels et al. | Aug 1976 | A |
3995619 | Glatzer | Dec 1976 | A |
4006747 | Kronenthal et al. | Feb 1977 | A |
4018228 | Goosen | Apr 1977 | A |
4038725 | Keefe | Aug 1977 | A |
4042979 | Angell | Aug 1977 | A |
4073179 | Hickey et al. | Feb 1978 | A |
4103690 | Harris | Aug 1978 | A |
4111206 | Vishnevsky et al. | Sep 1978 | A |
4129059 | Van Eck | Dec 1978 | A |
4140125 | Smith | Feb 1979 | A |
4170990 | Baumgart et al. | Oct 1979 | A |
4185636 | Gabbay et al. | Jan 1980 | A |
4192315 | Hilzinger et al. | Mar 1980 | A |
4214587 | Sakura | Jul 1980 | A |
4217902 | March | Aug 1980 | A |
4243048 | Griffin | Jan 1981 | A |
4324248 | Perlin | Apr 1982 | A |
4345601 | Fukuda | Aug 1982 | A |
4352358 | Angelchik | Oct 1982 | A |
4366819 | Kaster | Jan 1983 | A |
4396139 | Hall et al. | Aug 1983 | A |
4416266 | Baucom | Nov 1983 | A |
4456017 | Miles | Jun 1984 | A |
4465071 | Samuels et al. | Aug 1984 | A |
4470415 | Wozniak | Sep 1984 | A |
4470533 | Schuler | Sep 1984 | A |
4474181 | Schenck | Oct 1984 | A |
4485816 | Krumme | Dec 1984 | A |
4492229 | Grunwald | Jan 1985 | A |
4522207 | Kleiman et al. | Jun 1985 | A |
4523592 | Daniel | Jun 1985 | A |
4532927 | Miksza | Aug 1985 | A |
4535764 | Ebert | Aug 1985 | A |
4549545 | Levy | Oct 1985 | A |
4553542 | Schenck et al. | Nov 1985 | A |
4576605 | Kaidash et al. | Mar 1986 | A |
4586502 | Bedi et al. | May 1986 | A |
4586503 | Kirsch et al. | May 1986 | A |
4593693 | Schenck | Jun 1986 | A |
4595007 | Mericle | Jun 1986 | A |
4612932 | Caspar et al. | Sep 1986 | A |
4622970 | Wozniak | Nov 1986 | A |
4624255 | Schenck et al. | Nov 1986 | A |
4637380 | Orejola | Jan 1987 | A |
4641652 | Hutterer et al. | Feb 1987 | A |
4665906 | Jervis | May 1987 | A |
4665917 | Clanton et al. | May 1987 | A |
4683895 | Pohndorf | Aug 1987 | A |
4706362 | Strausburg | Nov 1987 | A |
4719917 | Barrows et al. | Jan 1988 | A |
4719924 | Crittenden et al. | Jan 1988 | A |
4730615 | Sutherland et al. | Mar 1988 | A |
4732151 | Jones | Mar 1988 | A |
4809695 | Gwathmey et al. | Mar 1989 | A |
4820298 | Leveen et al. | Apr 1989 | A |
4844318 | Kunreuther | Jul 1989 | A |
4873975 | Walsh et al. | Oct 1989 | A |
4890615 | Caspari et al. | Jan 1990 | A |
4896668 | Popoff et al. | Jan 1990 | A |
4899744 | Fujitsuka et al. | Feb 1990 | A |
4901721 | Hakki | Feb 1990 | A |
4923461 | Caspari et al. | May 1990 | A |
4924866 | Yoon | May 1990 | A |
4926860 | Stice et al. | May 1990 | A |
4929240 | Kirsch et al. | May 1990 | A |
4930674 | Barak | Jun 1990 | A |
4932955 | Merz et al. | Jun 1990 | A |
4935027 | Yoon | Jun 1990 | A |
4950015 | Nejib et al. | Aug 1990 | A |
4950283 | Dzubow et al. | Aug 1990 | A |
4950285 | Wilk | Aug 1990 | A |
4957498 | Caspari et al. | Sep 1990 | A |
4983176 | Cushman et al. | Jan 1991 | A |
4990152 | Yoon | Feb 1991 | A |
4991567 | McCuen et al. | Feb 1991 | A |
4994069 | Ritchart et al. | Feb 1991 | A |
4997439 | Chen | Mar 1991 | A |
5002550 | Li | Mar 1991 | A |
5002562 | Oberlander | Mar 1991 | A |
5002563 | Pyka et al. | Mar 1991 | A |
5007920 | Torre | Apr 1991 | A |
5011481 | Myers et al. | Apr 1991 | A |
5020713 | Kunreuther | Jun 1991 | A |
5026379 | Yoon | Jun 1991 | A |
5032127 | Frazee et al. | Jul 1991 | A |
5035692 | Lyon et al. | Jul 1991 | A |
5035702 | Taheri | Jul 1991 | A |
5042707 | Taheri | Aug 1991 | A |
5047047 | Yoon | Sep 1991 | A |
5053047 | Yoon | Oct 1991 | A |
5064431 | Gilbertson et al. | Nov 1991 | A |
5074874 | Yoon et al. | Dec 1991 | A |
5088692 | Weiler | Feb 1992 | A |
5100418 | Yoon et al. | Mar 1992 | A |
5100421 | Christoudias | Mar 1992 | A |
5104407 | Lam et al. | Apr 1992 | A |
5119983 | Green et al. | Jun 1992 | A |
5123913 | Wilk et al. | Jun 1992 | A |
5127413 | Ebert | Jul 1992 | A |
5129913 | Ruppert | Jul 1992 | A |
5152769 | Baber | Oct 1992 | A |
5154189 | Oberlander | Oct 1992 | A |
5158566 | Pianetti | Oct 1992 | A |
5171250 | Yoon | Dec 1992 | A |
5171252 | Friedland | Dec 1992 | A |
5174087 | Bruno | Dec 1992 | A |
5178634 | Ramos Martinez | Jan 1993 | A |
5192294 | Blake | Mar 1993 | A |
5196022 | Bilweis | Mar 1993 | A |
5201880 | Wright et al. | Apr 1993 | A |
5207694 | Broome | May 1993 | A |
5217027 | Hermens | Jun 1993 | A |
5219358 | Bendel et al. | Jun 1993 | A |
5221259 | Weldon et al. | Jun 1993 | A |
5222961 | Nakao et al. | Jun 1993 | A |
5222976 | Yoon | Jun 1993 | A |
5234447 | Kaster et al. | Aug 1993 | A |
5236440 | Hlavacek | Aug 1993 | A |
5242456 | Nash et al. | Sep 1993 | A |
5242457 | Akopov et al. | Sep 1993 | A |
5246443 | Mai | Sep 1993 | A |
5250053 | Snyder | Oct 1993 | A |
5258011 | Drews | Nov 1993 | A |
5261917 | Hasson et al. | Nov 1993 | A |
5269783 | Sander | Dec 1993 | A |
5269809 | Hayhurst et al. | Dec 1993 | A |
5282825 | Muck et al. | Feb 1994 | A |
5290289 | Sanders et al. | Mar 1994 | A |
5304117 | Wilk | Apr 1994 | A |
5304204 | Bregen | Apr 1994 | A |
5306296 | Wright et al. | Apr 1994 | A |
5312436 | Coffey et al. | May 1994 | A |
5314468 | Ramos Martinez | May 1994 | A |
5330503 | Yoon | Jul 1994 | A |
5334196 | Scott et al. | Aug 1994 | A |
5336233 | Chen | Aug 1994 | A |
5336239 | Gimpelson | Aug 1994 | A |
5346459 | Allen | Sep 1994 | A |
5350420 | Cosgrove et al. | Sep 1994 | A |
5353804 | Kornberg et al. | Oct 1994 | A |
5355897 | Pietrafitta et al. | Oct 1994 | A |
5356424 | Buzerak et al. | Oct 1994 | A |
5364406 | Sewell | Nov 1994 | A |
5366459 | Yoon | Nov 1994 | A |
5366462 | Kaster et al. | Nov 1994 | A |
5366479 | McGarry et al. | Nov 1994 | A |
5374268 | Sander | Dec 1994 | A |
5376096 | Foster | Dec 1994 | A |
5382259 | Phelps et al. | Jan 1995 | A |
5383904 | Totakura et al. | Jan 1995 | A |
5387227 | Grice | Feb 1995 | A |
5403331 | Chesterfield | Apr 1995 | A |
5403333 | Kaster et al. | Apr 1995 | A |
5403338 | Milo | Apr 1995 | A |
5403346 | Loeser | Apr 1995 | A |
5413584 | Schulze | May 1995 | A |
5417684 | Jackson et al. | May 1995 | A |
5417700 | Egan | May 1995 | A |
5423821 | Pasque | Jun 1995 | A |
5431666 | Sauer et al. | Jul 1995 | A |
5437680 | Yoon | Aug 1995 | A |
5437681 | Meade et al. | Aug 1995 | A |
5437685 | Blasnik | Aug 1995 | A |
5439479 | Shichman et al. | Aug 1995 | A |
5445167 | Yoon et al. | Aug 1995 | A |
5445644 | Pietrafitta et al. | Aug 1995 | A |
5450860 | O'Connor | Sep 1995 | A |
5451231 | Rabenau et al. | Sep 1995 | A |
5452733 | Sterman et al. | Sep 1995 | A |
5454834 | Boebel et al. | Oct 1995 | A |
5456246 | Schmieding et al. | Oct 1995 | A |
5462561 | Voda | Oct 1995 | A |
5474557 | Mai | Dec 1995 | A |
5480405 | Yoon | Jan 1996 | A |
5486187 | Schenck | Jan 1996 | A |
5486197 | Le et al. | Jan 1996 | A |
5488958 | Topel et al. | Feb 1996 | A |
5496334 | Klundt et al. | Mar 1996 | A |
5499990 | Schulken et al. | Mar 1996 | A |
5500000 | Feagin et al. | Mar 1996 | A |
5522884 | Wright | Jun 1996 | A |
5527342 | Pietrzak et al. | Jun 1996 | A |
5533236 | Tseng | Jul 1996 | A |
5538509 | Dunlap et al. | Jul 1996 | A |
5545214 | Stevens | Aug 1996 | A |
5549619 | Peters et al. | Aug 1996 | A |
5556411 | Taoda et al. | Sep 1996 | A |
5562685 | Mollenauer et al. | Oct 1996 | A |
5569205 | Hart et al. | Oct 1996 | A |
5569274 | Rapacki et al. | Oct 1996 | A |
5569301 | Granger et al. | Oct 1996 | A |
5571119 | Atala | Nov 1996 | A |
5571175 | Vanney et al. | Nov 1996 | A |
5582616 | Bolduc et al. | Dec 1996 | A |
5582619 | Ken | Dec 1996 | A |
5584879 | Reimold et al. | Dec 1996 | A |
5586983 | Sanders et al. | Dec 1996 | A |
5591179 | Edelstein | Jan 1997 | A |
5593414 | Shipp et al. | Jan 1997 | A |
5593424 | Northrup, III | Jan 1997 | A |
5597378 | Jervis | Jan 1997 | A |
5601571 | Moss | Feb 1997 | A |
5601572 | Middleman et al. | Feb 1997 | A |
5601600 | Ton | Feb 1997 | A |
5603718 | Xu | Feb 1997 | A |
5609608 | Benett et al. | Mar 1997 | A |
5628757 | Hasson | May 1997 | A |
5630540 | Blewett | May 1997 | A |
5632752 | Buelna | May 1997 | A |
5632753 | Loeser | May 1997 | A |
5643295 | Yoon | Jul 1997 | A |
5643305 | Al-Tameem | Jul 1997 | A |
5645568 | Chervitz et al. | Jul 1997 | A |
5653716 | Malo et al. | Aug 1997 | A |
5653718 | Yoon | Aug 1997 | A |
5658312 | Green et al. | Aug 1997 | A |
5660186 | Bachir | Aug 1997 | A |
5665109 | Yoon | Sep 1997 | A |
5669918 | Balazs et al. | Sep 1997 | A |
5676670 | Kim | Oct 1997 | A |
5683417 | Cooper | Nov 1997 | A |
5690662 | Chiu et al. | Nov 1997 | A |
5695504 | Gifford, III et al. | Dec 1997 | A |
5695505 | Yoon | Dec 1997 | A |
5697913 | Sierocuk et al. | Dec 1997 | A |
5697943 | Sauer et al. | Dec 1997 | A |
5700270 | Peyser et al. | Dec 1997 | A |
5700271 | Whitfield et al. | Dec 1997 | A |
5702412 | Popov et al. | Dec 1997 | A |
5707362 | Yoon | Jan 1998 | A |
5707380 | Hinchliffe et al. | Jan 1998 | A |
5709693 | Taylor | Jan 1998 | A |
5709695 | Northrup, III | Jan 1998 | A |
5715987 | Kelley et al. | Feb 1998 | A |
5720755 | Dakov | Feb 1998 | A |
5725539 | Matern | Mar 1998 | A |
5725542 | Yoon | Mar 1998 | A |
5728135 | Bregen et al. | Mar 1998 | A |
5732872 | Bolduc et al. | Mar 1998 | A |
5735290 | Sterman et al. | Apr 1998 | A |
5746753 | Sullivan et al. | May 1998 | A |
5755778 | Kleshinski | May 1998 | A |
5766189 | Matsumo | Jun 1998 | A |
5769870 | Salahich et al. | Jun 1998 | A |
5779718 | Green et al. | Jul 1998 | A |
5782397 | Koukline | Jul 1998 | A |
5782844 | Yoon et al. | Jul 1998 | A |
5797920 | Kim | Aug 1998 | A |
5797933 | Snow et al. | Aug 1998 | A |
5797934 | Rygaard | Aug 1998 | A |
5797960 | Stevens et al. | Aug 1998 | A |
5799661 | Boyd et al. | Sep 1998 | A |
5799857 | Robertson et al. | Sep 1998 | A |
5810848 | Hayhurst | Sep 1998 | A |
5810851 | Yoon | Sep 1998 | A |
5810853 | Yoon | Sep 1998 | A |
5810882 | Bolduc et al. | Sep 1998 | A |
5817113 | Gifford, III et al. | Oct 1998 | A |
5820631 | Nobles | Oct 1998 | A |
5824002 | Gentelia et al. | Oct 1998 | A |
5824008 | Bolduc et al. | Oct 1998 | A |
5827265 | Glinsky et al. | Oct 1998 | A |
5827316 | Young et al. | Oct 1998 | A |
5830221 | Stein et al. | Nov 1998 | A |
5830222 | Makower | Nov 1998 | A |
5833698 | Hinchliffe | Nov 1998 | A |
5849019 | Yoon | Dec 1998 | A |
5851216 | Allen | Dec 1998 | A |
5855614 | Stevens et al. | Jan 1999 | A |
5868702 | Stevens et al. | Feb 1999 | A |
5868763 | Spence et al. | Feb 1999 | A |
5871528 | Camps et al. | Feb 1999 | A |
5879371 | Gardiner et al. | Mar 1999 | A |
5881943 | Heck et al. | Mar 1999 | A |
5882340 | Yoon | Mar 1999 | A |
5891130 | Palermo et al. | Apr 1999 | A |
5891160 | Williamson, IV et al. | Apr 1999 | A |
5893369 | LeMole | Apr 1999 | A |
5893865 | Swindle et al. | Apr 1999 | A |
5893886 | Zegdi et al. | Apr 1999 | A |
5895394 | Kienzle et al. | Apr 1999 | A |
5904697 | Gifford, III et al. | May 1999 | A |
5908428 | Scirica et al. | Jun 1999 | A |
5911352 | Racenet et al. | Jun 1999 | A |
5919207 | Taheri | Jul 1999 | A |
5931842 | Goldsteen et al. | Aug 1999 | A |
5941434 | Green | Aug 1999 | A |
5941442 | Geiste et al. | Aug 1999 | A |
5941888 | Wallace et al. | Aug 1999 | A |
5941908 | Goldsteen et al. | Aug 1999 | A |
5944730 | Nobles et al. | Aug 1999 | A |
5951576 | Wakabayashi | Sep 1999 | A |
5951600 | Lemelson | Sep 1999 | A |
5954735 | Rygaard | Sep 1999 | A |
5957363 | Heck | Sep 1999 | A |
5957938 | Zhu et al. | Sep 1999 | A |
5957940 | Tanner et al. | Sep 1999 | A |
5961481 | Sterman et al. | Oct 1999 | A |
5961539 | Northrup, III et al. | Oct 1999 | A |
5964772 | Bolduc et al. | Oct 1999 | A |
5964782 | Lafontaine et al. | Oct 1999 | A |
5972024 | Northrup, III et al. | Oct 1999 | A |
5976159 | Bolduc et al. | Nov 1999 | A |
5976161 | Kirsch et al. | Nov 1999 | A |
5976164 | Bencini et al. | Nov 1999 | A |
5976178 | Goldsteen et al. | Nov 1999 | A |
5984917 | Fleischman et al. | Nov 1999 | A |
5984959 | Robertson et al. | Nov 1999 | A |
5989242 | Saadat et al. | Nov 1999 | A |
5989268 | Pugsley, Jr. et al. | Nov 1999 | A |
5989276 | Houser et al. | Nov 1999 | A |
5989278 | Mueller | Nov 1999 | A |
5993468 | Rygaard | Nov 1999 | A |
5997556 | Tanner | Dec 1999 | A |
6001110 | Adams | Dec 1999 | A |
6007544 | Kim | Dec 1999 | A |
6010531 | Donlon et al. | Jan 2000 | A |
6013084 | Ken et al. | Jan 2000 | A |
6022367 | Sherts | Feb 2000 | A |
6024748 | Manzo et al. | Feb 2000 | A |
6032849 | Mastri et al. | Mar 2000 | A |
6033419 | Hamblin, Jr. et al. | Mar 2000 | A |
6036699 | Andreas et al. | Mar 2000 | A |
6036703 | Evans et al. | Mar 2000 | A |
6036710 | McGarry et al. | Mar 2000 | A |
6042607 | Williamson et al. | Mar 2000 | A |
6056751 | Fenton | May 2000 | A |
6063070 | Eder | May 2000 | A |
6066148 | Rygaard | May 2000 | A |
6074401 | Gardiner et al. | Jun 2000 | A |
6074418 | Buchanan et al. | Jun 2000 | A |
6077291 | Das | Jun 2000 | A |
6080114 | Russin | Jun 2000 | A |
6083237 | Huitema et al. | Jul 2000 | A |
6106538 | Shiber | Aug 2000 | A |
6110188 | Narciso | Aug 2000 | A |
6113611 | Allen et al. | Sep 2000 | A |
6113612 | Swanson et al. | Sep 2000 | A |
6120524 | Taheri | Sep 2000 | A |
6132438 | Fleischman et al. | Oct 2000 | A |
6139540 | Rost et al. | Oct 2000 | A |
6143004 | Davis et al. | Nov 2000 | A |
6149658 | Gardiner et al. | Nov 2000 | A |
6152935 | Kammerer et al. | Nov 2000 | A |
6152937 | Peterson et al. | Nov 2000 | A |
6159165 | Ferrera et al. | Dec 2000 | A |
6159225 | Makower | Dec 2000 | A |
6165183 | Kuehn et al. | Dec 2000 | A |
6165185 | Shennib et al. | Dec 2000 | A |
6171320 | Monassevitch | Jan 2001 | B1 |
6171321 | Gifford, III et al. | Jan 2001 | B1 |
6176413 | Heck et al. | Jan 2001 | B1 |
6176864 | Chapman | Jan 2001 | B1 |
6179840 | Bowman | Jan 2001 | B1 |
6179848 | Solem | Jan 2001 | B1 |
6179849 | Yencho et al. | Jan 2001 | B1 |
6183512 | Howanec et al. | Feb 2001 | B1 |
6190373 | Palermo et al. | Feb 2001 | B1 |
6193733 | Adams | Feb 2001 | B1 |
6193734 | Bolduc et al. | Feb 2001 | B1 |
6197037 | Hair | Mar 2001 | B1 |
6217611 | Klostermeyer | Apr 2001 | B1 |
6221083 | Mayer | Apr 2001 | B1 |
6241738 | Dereume | Jun 2001 | B1 |
6241741 | Duhaylongsod et al. | Jun 2001 | B1 |
6248117 | Blatter | Jun 2001 | B1 |
6250308 | Cox | Jun 2001 | B1 |
6254615 | Bolduc et al. | Jul 2001 | B1 |
6269819 | Oz et al. | Aug 2001 | B1 |
6280460 | Bolduc et al. | Aug 2001 | B1 |
6283979 | Mers Kelly et al. | Sep 2001 | B1 |
6283993 | Cosgrove et al. | Sep 2001 | B1 |
6296622 | Kurz et al. | Oct 2001 | B1 |
6296656 | Bolduc et al. | Oct 2001 | B1 |
6306141 | Jervis | Oct 2001 | B1 |
6332893 | Mortier et al. | Dec 2001 | B1 |
6346074 | Roth | Feb 2002 | B1 |
6346112 | Adams | Feb 2002 | B2 |
6350269 | Shipp et al. | Feb 2002 | B1 |
6352543 | Cole | Mar 2002 | B1 |
6358258 | Arcia et al. | Mar 2002 | B1 |
6361559 | Houser et al. | Mar 2002 | B1 |
6368348 | Gabbay | Apr 2002 | B1 |
6371964 | Vargas et al. | Apr 2002 | B1 |
6387105 | Gifford, III et al. | May 2002 | B1 |
6391038 | Vargas et al. | May 2002 | B2 |
6402764 | Hendricksen et al. | Jun 2002 | B1 |
6406492 | Lytle | Jun 2002 | B1 |
6406493 | Tu et al. | Jun 2002 | B1 |
6409739 | Nobles et al. | Jun 2002 | B1 |
6409758 | Stobie et al. | Jun 2002 | B2 |
6416527 | Berg et al. | Jul 2002 | B1 |
6418597 | Deschenes et al. | Jul 2002 | B1 |
6419658 | Restelli et al. | Jul 2002 | B1 |
6419681 | Vargas et al. | Jul 2002 | B1 |
6419695 | Gabbay | Jul 2002 | B1 |
6425900 | Knodel et al. | Jul 2002 | B1 |
6428550 | Vargas et al. | Aug 2002 | B1 |
6428555 | Koster, Jr. | Aug 2002 | B1 |
6451048 | Berg et al. | Sep 2002 | B1 |
6461320 | Yencho et al. | Oct 2002 | B1 |
6475222 | Berg et al. | Nov 2002 | B1 |
6478804 | Vargas et al. | Nov 2002 | B2 |
6485496 | Suyker et al. | Nov 2002 | B1 |
6491707 | Makower et al. | Dec 2002 | B2 |
6497671 | Ferrera et al. | Dec 2002 | B2 |
6497710 | Yencho et al. | Dec 2002 | B2 |
6514265 | Ho et al. | Feb 2003 | B2 |
6517558 | Gittings et al. | Feb 2003 | B2 |
6524338 | Gundry | Feb 2003 | B1 |
6533812 | Swanson et al. | Mar 2003 | B2 |
6537288 | Vargas et al. | Mar 2003 | B2 |
6547799 | Hess et al. | Apr 2003 | B2 |
6551332 | Nguyen et al. | Apr 2003 | B1 |
6562053 | Schulze | May 2003 | B2 |
6575985 | Knight et al. | Jun 2003 | B2 |
6589255 | Schulze et al. | Jul 2003 | B2 |
6607541 | Gardiner et al. | Aug 2003 | B1 |
6607542 | Wild | Aug 2003 | B1 |
6613059 | Schaller et al. | Sep 2003 | B2 |
6629988 | Weadock | Oct 2003 | B2 |
6635214 | Rapacki et al. | Oct 2003 | B2 |
6641593 | Schaller et al. | Nov 2003 | B1 |
6648900 | Fleischman et al. | Nov 2003 | B2 |
6651670 | Rapacki et al. | Nov 2003 | B2 |
6651672 | Roth | Nov 2003 | B2 |
6652540 | Cole et al. | Nov 2003 | B1 |
6652541 | Vargas et al. | Nov 2003 | B1 |
6660015 | Berg et al. | Dec 2003 | B1 |
6682540 | Sancoff et al. | Jan 2004 | B1 |
6695859 | Golden et al. | Feb 2004 | B1 |
6702826 | Liddicoat et al. | Mar 2004 | B2 |
6709442 | Miller et al. | Mar 2004 | B2 |
6712829 | Schulze | Mar 2004 | B2 |
6719768 | Cole et al. | Apr 2004 | B1 |
6743243 | Roy et al. | Jun 2004 | B1 |
6749622 | McGuckin | Jun 2004 | B2 |
6776782 | Schulze | Aug 2004 | B2 |
6776784 | Ginn | Aug 2004 | B2 |
6776785 | Yencho et al. | Aug 2004 | B1 |
6802847 | Carson et al. | Oct 2004 | B1 |
6821286 | Carranza et al. | Nov 2004 | B1 |
6869444 | Gabbay | Mar 2005 | B2 |
6913607 | Ainsworth et al. | Jul 2005 | B2 |
6918917 | Nguyen et al. | Jul 2005 | B1 |
6921407 | Nguyen et al. | Jul 2005 | B2 |
6926730 | Nguyen et al. | Aug 2005 | B1 |
6945980 | Nguyen et al. | Sep 2005 | B2 |
6955679 | Hendricksen et al. | Oct 2005 | B1 |
6960221 | Ho et al. | Nov 2005 | B2 |
6979337 | Kato | Dec 2005 | B2 |
6979338 | Loshakove et al. | Dec 2005 | B1 |
7022131 | Derowe et al. | Apr 2006 | B1 |
7056330 | Gayton | Jun 2006 | B2 |
7063711 | Loshakove et al. | Jun 2006 | B1 |
7070618 | Streeter | Jul 2006 | B2 |
7182769 | Ainsworth et al. | Feb 2007 | B2 |
7220268 | Blatter | May 2007 | B2 |
20010018592 | Schaller et al. | Aug 2001 | A1 |
20010018593 | Nguyen et al. | Aug 2001 | A1 |
20010018611 | Solem et al. | Aug 2001 | A1 |
20010021856 | Bolduc et al. | Sep 2001 | A1 |
20010047181 | Ho et al. | Nov 2001 | A1 |
20020010490 | Schaller et al. | Jan 2002 | A1 |
20020042623 | Blatter et al. | Apr 2002 | A1 |
20020082614 | Logan et al. | Jun 2002 | A1 |
20020099395 | Acampora et al. | Jul 2002 | A1 |
20020151916 | Muramatsu et al. | Oct 2002 | A1 |
20020165561 | Ainsworth et al. | Nov 2002 | A1 |
20020173803 | Yang et al. | Nov 2002 | A1 |
20030074012 | Nguyen et al. | Apr 2003 | A1 |
20030078603 | Schaller et al. | Apr 2003 | A1 |
20030083742 | Spence et al. | May 2003 | A1 |
20030093118 | Ho et al. | May 2003 | A1 |
20030125755 | Schaller et al. | Jul 2003 | A1 |
20030191481 | Nguyen et al. | Oct 2003 | A1 |
20030195531 | Nguyen et al. | Oct 2003 | A1 |
20030199974 | Lee et al. | Oct 2003 | A1 |
20040050393 | Golden et al. | Mar 2004 | A1 |
20040068276 | Golden et al. | Apr 2004 | A1 |
20040102797 | Golden et al. | May 2004 | A1 |
20040111099 | Nguyen et al. | Jun 2004 | A1 |
20040138685 | Clague et al. | Jul 2004 | A1 |
20040176663 | Edoga | Sep 2004 | A1 |
20040193259 | Gabbay | Sep 2004 | A1 |
20050004582 | Edoga | Jan 2005 | A1 |
20050021054 | Ainsworth et al. | Jan 2005 | A1 |
20050043749 | Breton et al. | Feb 2005 | A1 |
20050065601 | Lee et al. | Mar 2005 | A1 |
20050070924 | Schaller et al. | Mar 2005 | A1 |
20050075659 | Realyvasquez et al. | Apr 2005 | A1 |
20050075667 | Schaller et al. | Apr 2005 | A1 |
20050080454 | Drews | Apr 2005 | A1 |
20050101975 | Nguyen et al. | May 2005 | A1 |
20050107871 | Realyvasquez et al. | May 2005 | A1 |
20050131429 | Ho et al. | Jun 2005 | A1 |
20050267572 | Schoon et al. | Dec 2005 | A1 |
20060004389 | Nguyen et al. | Jan 2006 | A1 |
20060253143 | Edoga et al. | Nov 2006 | A1 |
20060271081 | Realyvasquez | Nov 2006 | A1 |
20060293701 | Ainsworth et al. | Dec 2006 | A1 |
20070010835 | Breton et al. | Jan 2007 | A1 |
20070027461 | Gardiner et al. | Feb 2007 | A1 |
20070106313 | Golden et al. | May 2007 | A1 |
20070142848 | Ainsworth et al. | Jun 2007 | A1 |
Number | Date | Country |
---|---|---|
0219999 | Mar 1910 | DE |
0377052 | Jun 1923 | DE |
2703529 | Jan 1977 | DE |
3203410 | May 1981 | DE |
3227984 | Feb 1984 | DE |
3504202 | Aug 1985 | DE |
4133800 | Oct 1991 | DE |
4402058 | Apr 1995 | DE |
19547617 | Sep 1997 | DE |
19732234 | Jan 1999 | DE |
0072232 | Feb 1983 | EP |
0122046 | Mar 1983 | EP |
0129441 | Dec 1984 | EP |
0130037 | Jan 1985 | EP |
0140557 | May 1985 | EP |
0121362 | Sep 1987 | EP |
0409569 | Jan 1991 | EP |
0432692 | Jun 1991 | EP |
0478949 | Aug 1991 | EP |
0494636 | Jul 1992 | EP |
0537955 | Apr 1993 | EP |
0559429 | Sep 1993 | EP |
0598529 | May 1994 | EP |
0326426 | Dec 1994 | EP |
0419597 | Dec 1994 | EP |
0632999 | Jan 1995 | EP |
0641546 | Mar 1995 | EP |
0656191 | Jun 1995 | EP |
0687446 | Dec 1995 | EP |
0705568 | Apr 1996 | EP |
0711532 | May 1996 | EP |
0705569 | Oct 1996 | EP |
0734697 | Oct 1996 | EP |
0778005 | Jun 1997 | EP |
0815795 | Jan 1998 | EP |
2223410 | Apr 1990 | GB |
07308322 | Nov 1995 | JP |
08336544 | Dec 1996 | JP |
10337291 | Dec 1998 | JP |
2110222 | May 1998 | RU |
577022 | Oct 1977 | SU |
1186199 | Oct 1985 | SU |
1456109 | Feb 1989 | SU |
1560133 | Apr 1990 | SU |
9006725 | Jun 1990 | WO |
9009149 | Aug 1990 | WO |
9014795 | Dec 1990 | WO |
9107916 | Jun 1991 | WO |
9108708 | Jun 1991 | WO |
9117712 | Nov 1991 | WO |
9205828 | Apr 1992 | WO |
9212676 | Aug 1992 | WO |
9222041 | Dec 1992 | WO |
9301750 | Feb 1993 | WO |
9415535 | Jul 1994 | WO |
9415537 | Jul 1994 | WO |
9600035 | Jan 1996 | WO |
9606565 | Mar 1996 | WO |
9638090 | Dec 1996 | WO |
9712555 | Apr 1997 | WO |
9716122 | May 1997 | WO |
9727898 | Aug 1997 | WO |
9728744 | Aug 1997 | WO |
9731575 | Sep 1997 | WO |
9732526 | Sep 1997 | WO |
9740754 | Nov 1997 | WO |
9742881 | Nov 1997 | WO |
9819636 | May 1998 | WO |
9830153 | Jul 1998 | WO |
9842262 | Oct 1998 | WO |
9848707 | Nov 1998 | WO |
9852475 | Nov 1998 | WO |
9907294 | Feb 1999 | WO |
9912484 | Mar 1999 | WO |
9915088 | Apr 1999 | WO |
9937218 | Jul 1999 | WO |
9962406 | Dec 1999 | WO |
9962408 | Dec 1999 | WO |
9962409 | Dec 1999 | WO |
9962415 | Dec 1999 | WO |
9963910 | Dec 1999 | WO |
9965409 | Dec 1999 | WO |
0003759 | Jan 2000 | WO |
0015144 | Mar 2000 | WO |
0059380 | Oct 2000 | WO |
0060995 | Oct 2000 | WO |
WO0059380 | Oct 2000 | WO |
0064381 | Nov 2000 | WO |
0074603 | Dec 2000 | WO |
0119292 | Mar 2001 | WO |
0126557 | Apr 2001 | WO |
0126586 | Apr 2001 | WO |
0128432 | Apr 2001 | WO |
0154618 | Aug 2001 | WO |
0174254 | Oct 2001 | WO |
0213701 | Feb 2002 | WO |
0213702 | Feb 2002 | WO |
0230295 | Apr 2002 | WO |
0230298 | Apr 2002 | WO |
WO0230295 | Apr 2002 | WO |
0234143 | May 2002 | WO |
02080779 | Oct 2002 | WO |
02080780 | Oct 2002 | WO |
02087425 | Nov 2002 | WO |
03053289 | Jul 2003 | WO |
03088875 | Oct 2003 | WO |
2005011468 | Feb 2005 | WO |
2005058170 | Jun 2005 | WO |
Number | Date | Country | |
---|---|---|---|
20070142848 A1 | Jun 2007 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10627168 | Jul 2003 | US |
Child | 11702469 | US |