This application is a U.S. national phase application based on International Application No. PCT/SE02/01687, filed 17 Sep. 2002, claiming priority from Swedish Patent Application No. 0103105-3 filed 19 Sep. 2001.
The invention relates to a sealing device, a sleeve and a holder element.
When forming a seal between rotary drum end faces and stationary end faces, there is a need to configure a contact force upon the sealing element. Various types of springs have here been applied acting against the seal. One problem has been that mechanical springs produce a force which proportionally decreases with increasing length owing to the spring characteristic F=k·X (where the force F is given by the spring constant k and the spring travel X). This has the effect that when the actual sealing element becomes worn, the contact force decreases, which eventually results in the sealing contact force being at its lowest when the sealing element is most worn, despite the fact that maintained sealing force will then be obtained. In Swedish application SE 0100260-9, a sealing device is shown, which comprises a sealing element arranged in a circularly drawn groove on a circular end faced housing in which the seal is formed by the sealing element being pressed into contact against the rotary drum end face through pressurization of a hose element in the bottom of the groove for the purpose of allowing a continually high spring force exertion against the sealing element, regardless of the degree of wear of the latter. SE0100260-9does not however state in closer detail how the connection of the pressurizing medium is to be made.
By virtue of EP348164, a seal for a drum wash for cellulose pulp is shown. Here, however, the seal sits only on a small part of the circumference and only one tubular hose is used. In FR2523682 a seal with double hoses is shown, in which pressurization of the hose is effected through holes in the walls of the hose. This design is not made to be able to work between two surfaces in which relative sliding is [configured]. In U.S. Pat. No. 4,448,425, a pressurized strip for axial sealing is shown, in which it too is pressurized via holes in the wall of the strip.
The abovementioned solutions do not produce a satisfactory locking of interacting sealing elements and/or pressurization is effected via a hole in the wall of the seal. The prior art has not exhibited solutions which offer simple pressurization of expanding force elements which can configure a force application over essentially the whole of the circumference.
The purpose of the invention is to offer a device which effectively allows a guaranteed pressurization and fixing of the hose element and hence an adjustable and suitable contact force upon the sealing element. The invention is preferably used in rotary drum filters or rotary drum filter presses, preferably wash presses for cellulose pulp, in which the groove, the hose element and the sealing element have the shape of a circle situated in the periphery of the drum end faces.
Another purpose is to offer a sealing device which gives a force application against the sealing element over essentially the whole of its circumference, including in the section for the pressurization of the hose element.
A further object is to offer a sealing device of simple design, in which individual elements can easily be replaced at low cost. The fact that the sealing device according to the invention consists of a plurality of interacting parts enables these to be individually replaced. For example, the sealing element and the hose element with their sleeves can be changed without the holder element simultaneously needing to be replaced, since the pressure connection is effected via a pressurized cavity. To enable the parts of the sealing device to be changed rapidly, the groove can expediently be constituted by a groove element which can be removed from the end face. Once the end face in which the sealing device is disposed has been opened somewhat out of the contact position, the groove element can be displaced from the centre of rotation so that parts of the sealing device thereby become accessible outside the periphery of the end face. By rotation of the groove element, the parts in the sealing device can easily be changed without the whole of the end face needing to be removed.
These objects are achieved with the distinguishing features specified in the characterizing parts to Patent claims 1, 5 and 11. Further characteristics and aspects and advantages of the invention can be seen from the subsequent patent claims and from the following detailed description of an embodiment.
a, b, c show in diagrammatic representation the structure of a working method of a sealing device on which the devices according to the invention are used,
a, b show the sleeve according to the invention in the sections B—B and C—C in
a–c show in diagrammatic representation the structure of a sealing device, disposed in a cylindrical groove 1 situated in the periphery of an end face, on which the devices according to the invention are used. The sealing device comprises a hose element 2, situated in the bottom of the groove 1 and comprising two oval, tubular hoses 2a and 2b and a sealing element 3.
a and 4b show the sleeves 7 in
It is important that the hose ends are held in place in the sleeves 7. Depending on chosen material in the sleeve 7 (plastic, polymer, rubber, etc.), this can be achieved by vulcanizing, gluing or grouting the hose ends in the sleeve 7. The sleeves internally supporting the hose ends also have the task of securing the ends in the sleeves 7.
The holder element 10 shown in
The overlying cover 11 on the holder element 10 runs in the longitudinal direction of the groove 1 and, when mounted, the cover 11 presses the sleeve-furnished ends of the hose element 2 in the groove 1 down into a predetermined position. The overlying cover 11 is provided with a groove 13 for a seal 14 for complete sealing of the two long sides of the cover and hence sealing of the two spaces 19a, 19b (see
A splitting of the holder element into two parts results in a simplified production and hence reduced production costs. A further advantage is that the cover 21 and middle piece 22 can be made in various materials. For example, the cover 21 can be constituted by metal, whilst the middle piece 22 can be made of any polymeric material. Through a suitable choice of material, the middle piece 22 can be given such characteristics that when pressurized, which pressure also acts upon those sides of the middle piece 22 facing the sleeves 7, it undergoes an elastic deformation to form a sealing contact against the adjacent sides of the groove 1. This offers further advantages with respect to the production of the middle piece 22, when the requirement of exact fitting in the groove 1 diminishes and production tolerances can thus be increased.
a shows the principle for assembly of the positioning screw 20, the holder element 10 (seal 14, cover 21, middle piece 22) and the hose element 2 with associated sleeves 7.
The positioning screw 20 also has the task of preventing the sealing element 3 from rotating in the groove, which would give rise to obvious problems on those parts of the sealing device situated underneath the groove 1, inter alia wearing of the underlying hose element 2. Rotation of the sealing element 3 is prevented by the positioning screw 20, when it is mounted in the groove 1, having a height such that it reaches up to the upper edge of the groove 1 or directly thereunder and the upper part 20b of the positioning screw, which sticks fully up over the holder element 10, engages with the sealing element 3 via a hole 23 in the latter.
The sealing device according to the invention thus comprises a hose element 2 with sleeves 7 at both ends, in which the sleeves 7 are held in a fixed position by the holes or projections 8 in the sleeves 7 being placed over congruent form-locking members 16, 16′ in the bottom of the groove 1. The sleeves 7 are held down in the groove 1, over the form-locking members 16, 16′, with the holder element 10, which is fixed with the through-going positioning screw 20 in the threaded hole 15′ in the bottom of the groove 1. The distance between the sleeves 7 is adapted so that on both sides of the middle piece 12 of the holder element a space 19a and 19b respectively is formed between the sleeve-furnished open hose ends on the hose element 2 and the holder element 10, in which the limited surfaces are constituted by the bottom and sides of the groove 1, the middle piece 12 of the holder element, the sleeve 7 and the bottom side of the overlying cover 11. In the one space 19a there is an inlet 17 for pressurizing medium and in the other space 19b an outlet 18 for the pressurizing medium. The inlet 17 and the outlet 18 are disposed in holes in the sides of the groove 1. The oval hose openings of the one sleeve 7 are thus provided with pressurized medium and on the other side of the holder element 10 the medium is evacuated through the oval hose mouths of the other sleeve 7. A flow is thereby formed, which ensures the pressurization. By controlling flow and pressure, the sealing device can be adjusted so that adjusted necessary contact force against the sealing element 3 lying on top in the groove 1 is obtained. The pressurizing medium can be air, or a liquid, preferably water.
The invention is not limited to the embodiment described above but can be varied within the scope of the subsequent patent claims.
For example, other ways can be found for fixing the sleeves. The form-locking members can, for example, constitute a part of the cover of the holder element. The cover of the holder element can also be shaped on the bottom side such that fixing of the sleeves is obtained by form-locking of these against the bottom side of the cover. The holes in the sleeves can instead be constituted by projections which fit against congruent recesses in the bottom of the groove.
The sleeves can alternatively or additionally be provided with grooves in the sides which fit against rabbets/wedges in the sides of the groove, which gives, moreover, additional security against insidious leakage of the pressurizing medium. Another variant can be to make the sleeves somewhat wider than the normal groove width and the groove in the section for the sealing device is given corresponding width, which produces a lug behind the sleeve for fixing of the position. The holder element on the sides of the middle piece might be provided with distances against respective sleeves for the creation of the spaces in front of the ends of the hose element where inlet and outlet for pressurizing medium are found.
Number | Date | Country | Kind |
---|---|---|---|
0103105 | Sep 2001 | SE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/SE02/01687 | 9/17/2002 | WO | 00 | 2/10/2004 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO03/041839 | 5/22/2003 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
2692783 | Foss | Oct 1954 | A |
3294243 | Cerles | Dec 1966 | A |
3722895 | Mevissen | Mar 1973 | A |
3860271 | Rodgers | Jan 1975 | A |
4268331 | Stevens | May 1981 | A |
4448425 | von Bergen | May 1984 | A |
4537408 | Pankoke | Aug 1985 | A |
4821536 | Bardsley | Apr 1989 | A |
5511795 | Laubach et al. | Apr 1996 | A |
5580424 | Snellman | Dec 1996 | A |
5746891 | Withers | May 1998 | A |
5975532 | Karttunen et al. | Nov 1999 | A |
6302399 | Prinzing | Oct 2001 | B1 |
6395137 | Snellman | May 2002 | B1 |
6402894 | Lamas et al. | Jun 2002 | B1 |
6551460 | Heinzmann | Apr 2003 | B1 |
Number | Date | Country |
---|---|---|
1098032 | May 2001 | EP |
2523682 | Mar 1982 | FR |
WO 9946025 | Sep 1999 | WO |
Number | Date | Country | |
---|---|---|---|
20040212153 A1 | Oct 2004 | US |