The present invention relates to a sealing device for a reciprocating shaft for sealing a reciprocating shaft of a hydraulic shock absorbing apparatus in an air suspension of a vehicle.
As a typical prior art of the sealing device for the reciprocating shaft which is used in the hydraulic shock absorber (a shock absorber) of the vehicle, there are structures described in Japanese Unexamined Patent Publication No. 2000-046092 (
The oil seal 101 is structured by integrally forming (vulcanizing and bonding) a main lip 101b to be brought into tight contact with an outer peripheral surface of a piston rod 113 in the state of facing inside in the axial direction (to the side of the rod guide 112), and an outer peripheral lip 101c closely contacting between the outer tube 111 and the rod guide 112, on a metal installation ring 101a with a rubber-like elastic material, and the dust seal 102 is structured by integrally forming (vulcanizing and bonding) a dust lip 102b brought into tight contact with an outer peripheral surface of the piston rod 113 in the state of facing outside in the axial direction, on a metal installation ring 102a with a rubber-like elastic material. Further, the backup ring 103 is structured such as to inhibit deformation of the main lip 101b of the oil seal 101 due to a hydraulic pressure in the hydraulic shock absorber, and is held by an inner peripheral portion of the installation ring 102a in the dust seal 102.
Further, the sealing device for the reciprocating shaft described in the Patent Document 2 is structured by integrally forming (vulcanizing and bonding) a main lip for sealing oil liquid in a hydraulic shock absorber and a dust lip preventing intrusion of dust and muddy water from the external, on an inner peripheral portion of a metal installation ring pinched between an opening end of an outer tube and a rod guide.
However, in the case of an air suspension, for example, since an air spring is constructed in an outer side of an outer tube, there is a case that pressure of air A applied to the dust seal 102 from an outer side becomes high pressure. Therefore, in accordance with the conventional sealing device shown in
Further, since the sealing device for the reciprocating shaft described in the Patent Document 2 is structured such as to be integrally provided with the main lip for sealing the oil liquid within the outer tube and the dust lip preventing intrusion of dust and muddy water from the external on one installation ring, the problem mentioned above is not generated. However, since the lips are formed in both sides in the axial direction of the installation ring, it is necessary to form a groove for circulating the rubber at a time of forming in an inner peripheral portion of the installation ring. Accordingly, since it is hard to design a pressure tight main lip, and it is hard to attach the backup ring, there is a problem in pressure tightness of the main lip.
The present invention is made by taking the problems mentioned above into consideration, and a technical problem of the present invention is to solve unstableness of sealing capability and friction characteristic caused by the external pressure intruding into a portion between an oil seal and a dust seal.
As a means for effectively solving the technical problem mentioned above, in accordance with a first aspect of the present invention, there is provided a sealing device for a reciprocating shaft comprising: an oil seal in which a main lip brought into tight contact with an outer peripheral surface of the reciprocating shaft in the state of facing inside in the axial direction is integrally provided in an inner peripheral portion of an inner installation ring; and a dust seal in which a dust lip brought into tight contact with an outer peripheral surface of the reciprocating shaft in the state of facing outside in the axial direction is integrally provided in an inner peripheral portion of an outer installation ring, wherein one of the oil seal and the dust seal is provided with an external pressure seal brought into tight contact with the installation ring in the other of the oil seal and the dust seal. The external pressure seal is structured such as to shut off intrusion of external pressure into a portion between the main lip and the dust lip from a portion between the inner installation ring and the outer installation ring.
Further, as another means for effectively solving the technical problem mentioned above, in accordance with a second aspect of the present invention, there is provided a sealing device for a reciprocating shaft comprising:
an oil seal in which a main lip brought into tight contact with an outer peripheral surface of the reciprocating shaft in the state of facing inside in the axial direction is integrally provided in an inner peripheral portion of an inner installation ring; and a dust seal in which a dust lip brought into tight contact with an outer peripheral surface of the reciprocating shaft in the state of facing outside in the axial direction is integrally provided in an inner peripheral portion of an outer installation ring, wherein tubular fitting surfaces closely fitted to each other are formed in the inner installation ring and the outer installation ring. Thus, the oil seal and the dust lip are integrally formed by closely fitting the tubular fitting surfaces, and it is possible to shut off intrusion of external pressure into a portion between the main lip and the dust lip.
In accordance with the sealing device for the reciprocating shaft on the basis of the invention stated in the first aspect, since it is possible to shut off the intrusion of the external pressure into the portion between the main lip of the oil seal and the dust lip of the dust seal from the portion between the inner installation ring of the oil seal and the outer installation ring of the dust seal, by means of the external pressure seal, even under a condition by which the external pressure becomes high pressure, it is possible to prevent the sealed space between the main lip and the dust lip from being pressurized so as to maintain an improved sealing capability of the main lip, and it is possible to secure a desired friction with respect to a reciprocation in the axial direction of the reciprocating shaft.
In accordance with the sealing device for the reciprocating shaft on the basis of the invention stated in the second aspect, since it is possible to shut off the intrusion of the external pressure into the portion between the main lip of the oil seal and the dust lip of the dust seal from the portion between the inner installation ring of the oil seal and the outer installation ring of the dust seal, by means of the closely fitting portions of the tubular fitting surface formed in the inner installation ring and the tubular fitting surface formed in the outer installation ring, even under a condition by which the external pressure becomes high pressure, it is possible to achieve the same effects as those of the first aspect. Further, since the oil seal and the dust lip can be integrally formed before assembling in the equipment, it is possible to easily handle.
1s a half cross sectional view in an installed state, showing the same kind of conventional sealing device for the reciprocating shaft as described in
A description will be in detail given below of preferable embodiments in accordance with the present invention with reference to the accompanying drawings.
First, in
The sealing device for the reciprocating shaft in accordance with the present invention is provided with an oil seal 1 fixed to portion between a caulked portion 111a in an open end of the outer tube 111 and the rod guide 112 in an inner side thereof, and sealing oil liquid O in a hydraulic shock absorber, a dust seal 2 preventing intrusion of dust, muddy water or the like from the external, and a backup ring 3.
In detail, the oil seal 1 has an inner installation ring 11 made of a metal and formed in a disc shape, a min lip 12 integrally provided in an inner peripheral portion thereof, and an outer peripheral lip 13 integrally provided in an outer peripheral portion of the inner installation ring 11, as shown in
The main lip 12, the outer peripheral lip 13, the elastic film portion 14, the intermediate projection 15 and the back surface lip 16 are formed by a continuous rubber-like elastic material. In detail, they are vulcanized and bonded to the inner installation ring 11 at the same time of vulcanizing formation by previously setting the inner installation ring 11, to which a vulcanizing adhesive agent is applied, within a predetermined metal mold, then filling an unvulcanized rubber material within an annular cavity defined between the inner installation ring 11 and a metal mold inner surface, and heating and pressurizing the unvulcanized rubber material.
On the other hand, the dust seal 2 has an outer installation ring 21 made of a metal and formed in a disc shape, and a dust lip 22 integrally provided in an inner peripheral portion thereof. The dust lip 22 is formed by a rubber-like elastic material. In detail, the dust lip 22 is vulcanized and bonded to the outer installation ring 21 at the same time of vulcanizing formation by previously setting the outer installation ring 21 to which a vulcanizing adhesive agent is applied, within a predetermined metal mold, then filling an unvulcanized rubber material within an annular cavity defined between the outer installation ring 21 and a metal mold inner surface, and heating and pressurizing the unvulcanized rubber material, in the same manner as the oil seal 1.
The backup ring 3 is formed with a synthetic resin material which has a suitable rigidity, is excellent in an abrasion resistance and has a significantly low friction coefficient, for example, PTFE or the like, and is interposed between the main lip 12 in the oil seal 1 and the inner peripheral portion 21a of the outer installation ring 21 in the dust seal 2.
In the installed state shown in
On the other hand, the outer peripheral lip 13 in the oil seal 1 is brought into tight contact in a suitable compressed state with an inner peripheral surface of the outer tube 111 and a tapered outer peripheral surface of the annular projection portion 112a in the rod guide 112, thereby inhibiting leakage of the oil liquid O from an outer periphery of the rod guide 112. Further, the elastic film portion 14 and the intermediate projection 15 provided in the inner installation ring 11 in the oil seal 1 absorb an error of a caulking force applied to the inner installation ring 11 and the outer installation ring 21 by the caulked portion 111a of the outer tube 111 and the annular projection portion 112a in the rod guide 112, and has a sealing function with respect to the oil liquid O.
In this case, in the air suspension, an air chamber (not shown) is provided in an outer portion of the hydraulic shock absorber, and an air A pressurized by an air compressor is supplied into the air chamber, whereby an air spring is constructed. Further, a pressure of the pressurized air A within the air chamber is applied to the dust seal 2, however, since the pressure of the pressurized air A is applied as a tight contact force with respect to the outer peripheral surface of the piston rod 113 to the dust lip 22 of the dust seal 2, it is possible to effectively prevent intrusion of the pressurized air A from a portion between the dust lip 22 and the piston rod 113.
Further, the pressurized air A within the air chamber intrudes into a micro gap between the outer installation ring 21 and the inner installation ring 11 of the oil seal 1 from a portion between the caulked portion 111a of the outer tube 111 and the outer peripheral portion of the outer installation ring 21 of the dust seal 2. However, since a plurality of external pressure seals 16 formed in the back surface of the base portion 12a in the main lip 12 are brought into tight contact with the outer installation ring 21 in the dust seal 2, in the state of being suitably compressed, by a pinching pressure by the caulked portion 111a of the outer tube 111 and the annular projection portion 112a in the rod guide 112, the pressurized air A can not pass through the micro gap between the inner installation ring 11 and the outer installation ring 21 to the inner peripheral side.
Accordingly, it is possible to prevent reduction of the fastening force of the main lip 12 and the dust lip 22 due to a reason that the pressurized air A intrudes into the sealed space B between the main lip 12 and the dust lip 22, and pressure is accumulated in the sealed space B. As a result, it is possible to maintain an improved sealing capability of the main lip 12 with respect to the oil liquid O reaching the inner peripheral space of the annular projection portion 112a in the rod guide 112, and it is possible to secure a desired friction with respect to a reciprocating motion in the axial direction of the piston rod 113.
Further, as is different from the case that the main lip 12 and the dust lip 22 which have inverse directions are integrally formed on a single metal ring, it is not necessary to form a notch groove for circulating the rubber at a time of forming, in the inner peripheral portion of the inner installation ring 11 in the oil seal 1 and the inner peripheral portion of the outer installation ring 21 in the dust seal 2, and thus it is possible to make the main lip 12 (and the dust lip 22) excellent in the pressure tightness.
The second embodiment shown in
In the structure mentioned above, the pressurized air A within the air chamber (not shown) provided in the external portion of the hydraulic shock absorber is going to intrude into the micro gap between the outer installation ring 21 and the inner installation ring 11 of the oil seal 1 from the portion between the caulked portion 111a of the outer tube 111 and the outer peripheral portion of the outer installation ring 21 of the dust seal 2. However, since the external pressure seals 16 provided in the outer peripheral portion of the inner installation ring 11 interpose between the outer peripheral surface of the annular groove 21b formed in the outer installation ring 21 of the dust seal 2 and the inner peripheral surface of the outer tube 111 in a compressed state, the pressurized air A can not intrude into the portion between the inner installation ring 11 and the outer installation ring 21. Accordingly, similarly to the first embodiment, it is possible to prevent pressure accumulation due to intrusion of the pressurized air A in the sealed space B between the main lip 12 and the dust lip 22, it is possible to maintain an improved sealing capability of the main lip 12 with respect to the oil liquid O, and it is possible to secure a desired friction with respect to a reciprocating motion in the axial direction of the piston rod 113.
In the first and second embodiments mentioned above, the external pressure seal 16 is provided in the oil seal 1 side, however, even in the case that the external pressure seal 16 is provided in the dust seal 2 side and is brought into tight contact with the inner installation ring 11 in the oil seal 1, it is possible to achieve the same effect.
The third embodiment in
In other words, the annular step portion 11a formed in the inner installation ring 11 of the oil seal 1 is pressure-inserted to the circular recess portion 21c formed in the outer installation ring 21 of the dust seal 2, whereby a tubular outer peripheral surface 11b in the annular step portion 11a and an inward tubular surface 21d in the circular recess portion 21c are tightly fitted to each other by a suitable fastening margin, and whereby the oil seal 1 (the inner installation ring 11) and the dust seal 2 (the outer installation ring 21) can be integrally formed with each other. In this case, the tubular outer peripheral surface 11b and the inward tubular surface 21d correspond to the tubular fitting surface described in the second aspect, and are smoothly finished so as to be brought into tight contact with each other with no gap.
Since the other portions are basically the same as those in
In the structure mentioned above, the pressurized air A within the air chamber (not shown) provided in the external portion of the hydraulic shock absorber is going to intrude into the micro gap between the outer installation ring 21 and the inner installation ring 11 of the oil seal 1 from the portion between the caulked portion 111a of the outer tube 111 and the outer peripheral portion of the outer installation ring 21 of the dust seal 2. However, since the tubular outer peripheral surface 11b in the inner installation ring 11 and the inward tubular surface 21d in the outer installation ring 21 are in the state of being tightly attached to each other with a fastening margin, the pressurized air A can not pass to the inner peripheral side from this portion. Accordingly, similarly to the first embodiment, it is possible to prevent pressure accumulation due to intrusion of the pressurized air A in the sealed space B between the main lip 12 and the dust lip 22, it is possible to maintain an improved sealing capability of the main lip 12 with respect to the oil liquid O, and it is possible to secure a desired friction with respect to a reciprocating motion in the axial direction of the piston rod 113.
Further, since the oil seal 1 and the dust seal 2 are manufactured as the independent parts, it is possible to make the main lip 12 (and the dust lip 22) excellent in the pressure tightness, similarly to the previous first embodiment. Further, it is possible to integrally form the oil seal 1 and the dust seal 2 with each other in the state in which the backup ring 3 is interposed between the main lip 12 and the outer installation ring 21, by pressure inserting the annular step portion 11a formed in the inner installation ring 11 of the oil seal 1 to the circular recess portion 21c formed in the outer installation ring 21 of the dust seal 2 from the separated state shown in
In this case, as is inverse to the embodiment shown in
The present invention can be preferably applied to a sealing device for a reciprocating shaft for sealing the reciprocating shaft of a hydraulic shock absorbing apparatus or the like in an air suspension of a vehicle.
Number | Date | Country | Kind |
---|---|---|---|
2003-322769 | Sep 2003 | JP | national |
This is a nationalization of PCT/JP2004/013411 filed 15 Sep. 2004 and published in Japanese.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/JP04/13411 | 9/15/2004 | WO | 3/16/2006 |