This invention generally relates to a sealing device. More particularly, the invention pertains to a sealing device for sealing off an opening between a shaft and a grease-lubricated split bearing housing, wherein the sealing device generally includes a main body arranged in a circumferential groove in the bearing housing opening, with the sealing device being divided in two halves by a diametrical cut.
For sealing off an opening between a shaft and a split bearing housing, sealing devices have been used which are in the form of sealing rings comprising a main body and a sealing lip, with the sealing rings being divided in two halves by virtue of a diametrical cut.
When such a known sealing device is mounted in a bearing housing, one seal half is positioned in a groove at an opening in the lower bearing housing half and the shaft is positioned in the opening. Afterwards, the other seal half is positioned in a groove in the upper bearing housing half and the upper bearing housing half is positioned over the lower half. Then, the two bearing housing halves are pressed against each other.
Unfortunately, problems exist with this type of sealing device in that the sealing function can be relatively easily reduced to a significant extent or virtually lost. The sealing lip which engages the shaft when the two bearing housing halves are pressed against each other is weak and has a tendency of becoming partially folded during assembly. This folding motion is quite difficult, if not virtually impossible, to visually detect as the lip is normally hidden by the bearing housing. However, it will be apparent that the lip has been folded because the sealing function of the lip is significantly reduced or lost.
For other purposes, other known types of sealing devices have ben employed. These sealing devices function in ways other than that described above, for example by being provided with a plurality of sealing lips to ensure good sealing.
U.S. Pat. No. 5,908,249 and U.S. Pat. No. 4,586,720 disclose sealing devices in the form of sealing rings provided with a plurality of sealing lips that are intended to be brought into sealing engagement against a bearing assembly. However, these sealing devices are used in specific applications. For example, the sealing device disclosed in U.S. Pat. No. 4,586,720 relates to neck seals of the type employed on the roll necks of rolls in a rolling mill. The neck seal is intended to prevent water from infiltrating into the bearing and contaminating the bearing oil while at the same time preventing loss of oil from the bearing.
According to one aspect, a sealing device which seals off an opening between a shaft and a grease-lubricated split bearing housing comprised of an upper bearing housing half and a lower bearing housing half, includes a main body arranged in a circumferential groove in the opening of the bearing housing and divided into two halves by a diametrical cut. The main body is provided with a pair of sealing lips spaced apart from each other, with an intermediate grease reservoir between the sealing lips. The main body also includes reinforcing portions arranged between the main body and the sealing lips to facilitate sealing engagement between the sealing lips and the shaft when the upper bearing housing half provided with the upper seal half is mounted onto the shaft with the shaft resting in the lower bearing housing half provided with the lower seal half.
According to another aspect, a sealing device sealing off an opening between a shaft and a lubricated bearing housing comprised of an first bearing housing half and a second bearing housing half, includes a main body divided into first and second seal halves by a diametrical cut, with the first seal half being positioned in a circumferential groove in the first bearing housing half and the second seal half being positioned in a circumferential groove in the second bearing housing half. The first and second seal halves are each provided with a pair of sealing lips spaced apart from each other and reinforcing portions each arranged between the main body and one of the sealing lips. The first and second seal halves are each provided with an intermediate lubricant reservoir located between the sealing lips.
In accordance with another aspect, a bearing assembly includes a lubricated bearing housing having a circumferential groove formed on an inner surface of the bearing housing and comprised of a first bearing housing half and a second bearing housing half, a shaft, an opening between the shaft and the lubricated bearing housing, and a sealing device for sealing off the opening between the shaft and the lubricated bearing housing. The sealing device includes a main body divided into two halves by a diametrical cut, and each arranged in the circumferential groove of the bearing housing. The sealing device is also provided with a pair of sealing lips spaced apart from each other, reinforcing portions arranged between the main body and the sealing lips, and an intermediate grease reservoir located between the sealing lips.
The sealing device is able to at least inhibit folding of the sealing lips during assembly of the split bearing housing, while also providing excellent sealing effect and ease in assembly. Additionally, the sealing device at least inhibits the sealing lips from being worn down too quickly because of pressure in the grease reservoir.
The foregoing and additional features and characteristics of the present invention will become more apparent from the following detailed description considered with reference to the accompanying drawing figures in which like reference numerals designate like elements.
Referring initially to
Considering the cross-section illustrated in
The second end of the main body 16 (i.e., the lower end in
Each of the two halves forming sealing device 10 also includes two reinforcing portions 30 which are spaced from the shoulders 26. These reinforcing portions 30 are arranged outside the sealing lips 28, and between the main seal body 16 and the sealing lips 28. In addition, the reinforcing portions 30 are made with a material thickness of relatively substantial thickness and have a rather stiff design capable of protecting the sealing lips from large dirt particles and sustaining most of the bending forces acting on the sealing device 10 during assembly. The sealing lips 28, on the other hand, have a substantially smaller material thickness than the reinforcing portions 30 and are therefore more easily bent.
Each half of the sealing device 10 is made in one piece by injection molding, using a material that is somewhat flexible, for example a polymeric material such as, for example, polyurethane.
Upon assembly, the lower seal half 14 is positioned in the groove 44 in the lower bearing housing half 42. Because the protrusion 18 of the sealing device 10 is slightly larger than the width of the groove 44, the protrusion 18 has to be pressed into the groove 44 and is squeezed. The sealing device 10 is pressed so far into the groove 44 that the shoulders 20 are brought into contact with the bearing housing surface 46 near to or adjoining the groove 44. Similarly, the upper seal half 12 is positioned in the groove in the upper bearing housing half 40. Preferably, the reservoir 32 is then filled with grease lubricant.
A shaft 38 is positioned in the opening 36 in the lower bearing housing half 42, and the upper bearing housing half 40 is mounted onto the shaft 38 and the lower bearing housing half 42. When pressing the two bearing housing halves 40, 42 together, the sealing lips 28 are brought into sealing engagement with the shaft 38. An excellent and reliable sealing thus results by virtue of the stiff, bending resistant, reinforcing portions 30, the existence of which in the sealing device 10 at least inhibits and preferably prevents the sealing lips 28 from folding.
During use of the bearing arrangement, the bearing housing 34 needs to be filled up with new grease lubricant from time to time. However, when new grease is pressed into the bearing housing 34, it is warmed up upon contacting the warmer bearing and so a relatively large pressure is built up inside the housing. Such pressure usually affects the sealing lips 28 in a negative manner in that they are pressed harder against the shaft 38, causing them to be quickly worn out. However, the reinforcing portions 30 provided in the sealing device here decrease this negative effect by carrying a large amount of the pressure so that the sealing lips are less exposed to such pressure.
The principles, preferred embodiment and mode of operation of the present invention have been described in the foregoing specification. However, the invention which is intended to be protected is not to be construed as limited to the particular embodiment disclosed. Further, the embodiment described herein is to be regarded as illustrative rather than restrictive. Variations and changes may be made by others, and equivalents employed, without departing from the spirit of the present invention. Accordingly, it is expressly intended that all such variations, changes and equivalents which fall within the spirit and scope of the present invention as defined in the claims, be embraced thereby.
Number | Name | Date | Kind |
---|---|---|---|
2177441 | Pesarese | Oct 1939 | A |
2461655 | Noble | Feb 1949 | A |
2888281 | Ratti | May 1959 | A |
2983529 | Price | May 1961 | A |
3325175 | Lower | Jun 1967 | A |
3338584 | Nakanishi et al. | Aug 1967 | A |
3347556 | Fleckenstein et al. | Oct 1967 | A |
3548721 | Eisennegger | Dec 1970 | A |
3563557 | Doutt | Feb 1971 | A |
3621952 | Long et al. | Nov 1971 | A |
3854737 | Gilliam, Sr. | Dec 1974 | A |
3871666 | Franz et al. | Mar 1975 | A |
3955859 | Stella et al. | May 1976 | A |
4159828 | Ostling et al. | Jul 1979 | A |
4165085 | Persson | Aug 1979 | A |
4421329 | Jelinek | Dec 1983 | A |
4586720 | Simmons et al. | May 1986 | A |
4865170 | Ciepichal | Sep 1989 | A |
4995623 | Wada et al. | Feb 1991 | A |
5271629 | Dahlhaus et al. | Dec 1993 | A |
5664651 | Miura et al. | Sep 1997 | A |
5667225 | Vollmer et al. | Sep 1997 | A |
5908249 | Nisley et al. | Jun 1999 | A |
6123338 | Edelmann et al. | Sep 2000 | A |
Number | Date | Country |
---|---|---|
2 104 141 | Aug 1972 | DE |
332 687 | Oct 1976 | DE |
39 29 065 | Mar 1991 | DE |
0 441 741 | Aug 1991 | DE |
198 41 123 | Apr 2000 | DE |
Number | Date | Country | |
---|---|---|---|
20030062689 A1 | Apr 2003 | US |