This application claims benefit of Great Britain patent application serial number 0317395.2, filed Jul. 25, 2003, which is herein incorporated by reference.
1. Field of the Invention
The present invention relates to expandable tubing and methods of sealing a connection between expandable tubulars. In particular, but not exclusively, the present invention relates to methods of sealing a connection between expandable tubulars post-expansion.
2. Description of the Related Art
In the oil and gas exploration and production industry, there has been much research into the development of expandable tubulars in recent years. A number of different types of expandable tubing have been developed, including expandable sand-exclusion tubing based assemblies and solid expandable tubing such as expandable casing, liner, patches and straddles.
The tubing is typically expanded using either an expansion cone or mandrel, or a roller expansion tool, such as that disclosed in the applicant's International patent publication no. WO 00/37766.
In certain circumstances, it is necessary to seal connections between lengths of expandable tubing, such as between sections of tubing forming a casing or liner string. However, it has been found difficult to obtain an adequate seal between the tubing sections post-expansion.
One reason for this is that a relative radial separation can occur between male and female (pin and box) connections by which adjacent tubing sections are coupled together, following expansion.
It is amongst the objects of embodiments of the present invention to obviate or mitigate the foregoing disadvantage.
According to a first aspect of the present invention, there is provided a method of sealing a connection between expandable tubulars, the method comprising the steps of:
connecting a first expandable tubular to a second expandable tubular with a seal located between radially overlapping portions of the tubulars; and
configuring the seal to maintain sealing between the tubulars both pre and post expansion.
By configuring the seal to maintain sealing post-expansion, undesired leakage across the connection after expansion of the tubulars is prevented.
Preferably, the method further comprises expanding the first and second tubulars.
The step of configuring the seal to maintain sealing may comprise exerting a force on the seal sufficient to maintain sealing between the tubulars both pre and post expansion. The force may be exerted on the seal by compressing the seal either radially, axially or both radially and axially. The force may be exerted on the seal during connection or mating of the first and second expandable tubulars. This may be achieved by appropriate dimensioning or shaping of the first and second tubulars. For example, in one embodiment, the seal may be mounted on one of the tubulars and may define an uncompressed radial width (prior to connection of the tubulars). The tubulars may be dimensioned such that, when coupled together, a radial width of a space between the tubulars in which the seal is to be located is less than said uncompressed radial width of the seal, thereby compressing the seal. It will also be understood that there is a reduction in radial width of the seal post expansion, caused by diametric expansion of the seal. However, preferably, a post-expansion radial width of the space is less than a post expansion uncompressed radial width of the seal (a notional radial width of the seal when mounted on one of the tubulars, as described above, and expanded). Reference herein to a radial width of the seal is to a width in a radial direction of a wall of the seal.
The method may comprise coupling or mounting the seal on, in or to one of the first and second expandable tubulars. The seal may be located and supported against axial movement, and may, for example, be located in a channel or groove or otherwise recessed in or with respect to the respective tubular. Where the seal is located in a channel, groove or the like, the space may be defined between a base of the groove and a surface of the opposing tubular. Accordingly, the method may comprise dimensioning the space relative to the seal to ensure a large enough force is exerted on the seal to maintain sealing post expansion.
It will be understood that radial separation between the expandable tubulars may occur post expansion. This can occur in particular when using a roller expansion tool, which tends to cause an increase in the axial length of a tubular during expansion; an overlapping portion of a connected tubular experiences a different expansion mode and tends to contract in axial length, which can cause said portion to bend or bow outwardly at a location spaced from an end of the portion.
Furthermore, radial separation can occur due to a greater post-expansion elastic recovery of one of the tubulars relative to the other tubular. In particular, in the region of the overlapping tubular portions, an outer overlapping portion of one of the tubulars is expanded to a larger diameter than a radially inner portion. Where the tubulars are of similar materials, there can be a greater elastic recovery of the inner portion than the outer portion, after the expansion tool has passed through the tubulars.
Additionally, radial separation can occur due to “end effects”, where an axial free end of a tubular experiences a greater degree of elastic recovery and tends to bend radially inwardly after an expansion tool has passed through the tubular.
The method may therefore comprise configuring the seal to accommodate any such radial separation between the first and second expandable tubulars (in particular between the radially overlapping portions of the tubulars) and also to accommodate any reduction in radial width of the seal.
The step of configuring the seal to maintain sealing may alternatively comprise exerting a force on the seal separately from the step of connecting the first and second tubulars together and, in embodiments of the invention, a mechanism may be provided for exerting a force on the seal. The mechanism may be moveable to exert a force on the seal and may be moveable in response to connection of the first and second tubulars together or may be separately actuated or operated.
In an alternative embodiment, the step of configuring the seal to maintain sealing may comprise locating a seal between said overlapping portions of the tubulars, the seal adapted to swell on exposure to an activating fluid. The seal may swell in the presence of a hydrocarbon based fluid such as an oil, water or water based fluid, or a combination thereof. It will be understood that such fluids are typically present in the downhole environment. The method may comprise selectively exposing the seal to the activating fluid. The seal may be initially isolated from the fluid, and the method may comprise exposing the seal to the fluid in a downhole environment. For example, the method may comprise running the tubulars into a borehole with the seal isolated from the activating fluid, and then exposing the seal to the activating fluid. The seal may be exposed in response to a predetermined pressure of activating fluid in a downhole environment, and the method may comprise providing an isolation member such as a disc or valve adapted to rupture or open in response to a determined pressure. Thus on experiencing a determined fluid pressure in the downhole environment, the isolation member may open or rupture, exposing the seal to the activating fluid, thereby causing the seal to swell to seal between the tubulars. In a further alternative, the method may further comprise exposing the seal during or on connection of the tubulars, or in a separate step, for example, by providing a mechanism which is actuatable to selectively expose the seal. In a still further alternative, where a seal is provided which is adapted to swell on exposure to a hydrocarbon based activating fluid, the seal may be open to the environment prior to location in the downhole environment (for example, on connection of the tubulars at surface), but as the seal only swells on exposure to the hydrocarbon based fluid, the seal only swells in the downhole environment.
The method may further comprise determining a location where the first and second expandable tubulars are likely to experience radial separation on expansion and locating the seal in said location. The method may comprise determining a degree of separation between said overlapping portions of the tubulars. The step of determining said location and/or degree of separation may comprise determining at least one parameter of the first and/or second expandable tubulars, the parameter selected from the group comprising: a material of the first and/or second tubular; a pre-expansion yield strength of the first and/or second tubular; Young's Modulus (E) of the first and/or second tubular; at least one dimension of the first and/or second tubular such as a pre-expansion length of overlap between the tubulars, relative pre-expansion diameters/wall thicknesses and thus relative spacing between the first and second tubulars, in a particular embodiment, a relative pre-expansion spacing between said overlapping portions of the first and second tubulars; a desired post-expansion diameter/wall thickness of the first and/or second tubular; anticipated work hardening of the tubulars; an anticipated or desired degree of axial extension or contraction in length of the first and/or second tubular; and loading or forces experienced by the tubulars during the expansion process.
The method may further comprise performing a simulation or analysis of expansion of the tubulars to determine a location of the seal and/or the degree of separation, and may comprise determining at least one, preferably a plurality of said parameters and performing the simulation based upon said selected parameter or parameters. The method may comprise carrying out a finite element analysis (FEA), by constructing a finite element model and applying simulated loading to the model.
There may be a plurality of seals and the method may comprise locating at least one seal on each of the first and second expandable tubulars, or locating a plurality of seals on one or both of the first and second expandable tubulars.
According to a second aspect of the present invention, there is provided expandable tubing comprising:
first and second expandable tubulars adapted to be coupled together; and
a seal adapted to be located between radially overlapping portions of the first and second tubulars and to be configured to maintain sealing between the first and second tubulars both pre and post expansion.
The seal may be adapted to have a force exerted thereon sufficient to maintain sealing. The seal may be adapted to be compressed radially, axially or both radially and axially. The first and second tubulars may be adapted to exert a force on the seal during connection of the first and second expandable tubulars together. The tubulars may be dimensioned such that, when coupled together, a radial width of a space between the tubulars in which the seal is to be located is less than said uncompressed radial width of the seal, thereby compressing the seal. Alternatively, the tubing may comprise a mechanism for exerting a force on the seal either during connection of the first and second tubulars together or in a separate procedure, for example, following connection of the tubulars.
The seal may be configured to accommodate any radial separation between the first and second expandable tubulars, in particular between the radially overlapping portions of the tubulars, and also to accommodate any reduction in radial width of the seal.
Alternatively or additionally, the seal may be adapted to swell on exposure to an activating fluid. The seal may be adapted to swell in the presence of a hydrocarbon based fluid such as an oil, water or water based fluid, or a combination thereof. The seal may be adapted to be initially isolated from the fluid, and to subsequently be exposed to the fluid in a downhole environment. The seal may be exposed in response to a predetermined pressure of activating fluid in a downhole environment, and the tubing may comprise an isolation member such as a disc or valve adapted to rupture or open in response to a determined pressure. In a further alternative, the seal may be adapted to be exposed during or on connection of the tubulars, or in a separate step, for example, the tubing may comprise a mechanism which is actuatable to selectively expose the seal. In a still further alternative, where a seal is provided which is adapted to swell on exposure to a hydrocarbon based activating fluid, the seal may be exposed prior to location in the downhole environment.
One of the first and second tubulars may comprise a male connecting portion and the other a female connecting portion, the male and female connecting portions adapted to be connected together, and the seal may be adapted to be located between radially overlapping parts of said connecting portions. The seal may be mounted on or in or coupled to one of the first and second tubulars, and may be mounted, for example, in a channel or groove. The tubing may comprise a plurality of seals, and at least one seal may be mounted on or in or coupled to each of the first and second expandable tubulars, or one of the first and second tubulars may carry a plurality of seals.
The seal may comprise an O-ring, sleeve or the like.
According to a third aspect of the present invention, there is provided a method of sealing a connection between expandable tubulars, the method comprising the steps of:
providing first and second expandable tubulars, one of the first and second tubulars having a male connecting portion and the other a female connecting portion; and
connecting and sealing the male and female connecting portions together.
The male and female connecting portions may therefore be configured such that the portions are sealed when connected together, and are thus automatically sealed on connection. The male and female connecting portions may be configured so as to be sealed post-expansion, but are preferably also sealed pre-expansion. The method may comprise exerting a mating force on the expandable tubulars during connection, the mating force sufficient to seal the connecting portions.
The male and female connecting portions may be sealed along an interface between the connecting portions. For example, the male and female connecting portions may be threaded and the method may comprise sealing between the respective threads of the male and female connecting portions.
The method may comprise providing a separate seal member or element such as a sealing sleeve, or a sealing material such as a paste or gel (in embodiments of the invention, a sealing thread dope) between the male and female connecting portions, in particular, between threads of the connecting portions. The seal member or the like may be compressed or squeezed on application of a mating force to the first and second expandable tubulars, such as during making up of the connection, and this may ensure sealing between the connecting portions.
Alternatively, the connecting portions may be adapted, for example, shaped or dimensioned, to self-seal on connection. For example, in embodiments of the invention, there may be a direct contact such as a metal to metal seal between the male and female connecting portions. Where the male and female connecting portions are threaded, threads of the respective portions may be shaped or otherwise formed to provide a seal on connection. In particular, the threads may be shaped to maintain sealing post-expansion and may, for example, be box or wedge shaped (such as where the male and female connecting portions are coupled together in a tapered fit) such that at least one, optionally both, of the leading and trailing thread flanks of the threads on one of the tubulars are in sealing contact with the cooperating trailing and leading thread flanks, respectively, on the other tubular, and said cooperating thread flanks may be perpendicular to axes of the tubulars. Thus any separation between the connecting portions during expansion does not cause any loss of sealing.
The method may comprise providing the first and second expandable tubulars of materials having different yield strengths and/or Young's Modulus. In a particular embodiment, the method may comprise forming the female connecting portion of a material having a higher yield strength and/or a lower Young's Modulus than the male connecting portion. This ensures that, on expansion, there is a relatively greater elastic recovery of the female portion relative to the male portion, maintaining a good connection and thus sealing between the male and female connecting portions and preventing or minimising any radial separation between the portions.
According to a fourth aspect of the present invention, there is provided expandable tubing comprising first and second expandable tubulars, one of the first and second tubulars having a male connecting portion and the other a female connecting portion, the male and female connecting portions adapted to be connected and sealed together.
Preferably, the male and female connecting portions are threaded and the threads may be formed or shaped to be sealed on connecting the portions together. In embodiments of the invention, the threads may be shaped to provide an interference sealing fit on connection and so as to maintain an interference seal fit post-expansion. The threads may be box shaped, wedge shaped, tapered or the like so as to allow for a degree of radial separation on expansion whilst maintaining an interference fit between the threads, such that any separation of the connection portions does not cause loss of sealing. The first and second tubulars may be coupled together such that at least one, optionally both, of the leading and trailing thread flanks of the threads on one of the tubulars are in sealing contact with the cooperating trailing and leading thread flanks, respectively, on the other tubular, and said cooperating thread flanks may be perpendicular to axes of the tubulars.
The male and female connecting portions may alternatively be adapted to be sealed relative to each other by a separate seal element, member or the like such as a seal sleeve, or by a material such as a paste or gel (for example, thread dope). The seal element, member or the like may be located between the connecting portions such as between threads of the portions.
Preferably, the female connecting portion is of a material having a higher yield strength and/or lower Young's Modulus than the male portion, ensuring sealing is maintained post-expansion, as described above. For example, the female portion may be of a Titanium alloy, whereas the male portion may be of a steel.
According to a fifth aspect of the present invention, there is provided a method of sealing a connection between expandable tubulars, the method comprising the steps of:
connecting a first expandable tubular to a second expandable tubular;
expanding the first and second expandable tubulars; and
permitting post expansion elastic recovery of at least a portion of one of the first and second tubulars relative to the other one of the first and second tubulars to seal the connection.
Preferably, the method comprises permitting recovery of said portion into sealing engagement with said other tubular.
The post-expansion recovery which takes place may be a relative radial contraction between said portion and said other tubular, and may be due to end effects experienced by said portion on expansion. The method may comprise selecting one or more parameter of the first and/or second expandable tubular to achieve a desired elastic recovery, the parameter selected from the group defined above.
The seal may additionally or alternatively be formed or enhanced by end effects experienced by said portion of the tubular.
Alternatively or additionally, the method may comprise providing first and second expandable tubulars of different yield strengths and/or Young's modulus, which may be achieved by selecting or forming the tubulars of different materials. In this fashion there may be a relative elastic recovery in said portion post-expansion.
Said portion may be adapted to elastically recover into contact with said other tubular to seal the connection. Alternatively or additionally, a separate seal member or element may be provided located between radially overlapping portions of the first and second expandable tubulars for sealing the connection post-expansion.
According to a sixth aspect of the present invention, there is provided expandable tubing comprising first and second expandable tubulars adapted to be coupled together and expanded, and whereby post expansion elastic recovery of at least a portion of one of the first and second tubulars into engagement with the other one of the first and second tubulars is adapted to seal the connection.
One of the first and second tubulars may have a male connecting portion and the other a female connecting portion, the male and female connecting portions adapted to be connected together. At least part of one of the first and second expandable tubulars, preferably the female connecting portion, may be adapted to overlap the other tubular, preferably the male connecting portion. This provides an overlap between the first and second expandable tubulars, and the overlap may form said portion. The dimensions of the overlap may be selected to provide a desired post-expansion elastic recovery, or the elastic recovery may be dependent on additional or alternative parameters selected from the group defined above.
In an embodiment of the invention, the first and second expandable tubulars, in particular the male and female connecting portions, may be of different yield strengths and/or Young's Modulus. This may ensure that residual stresses post-expansion provide a desired seal with the female connecting portion.
The expandable tubing may further comprise a seal element or member and said portion may be adapted to exert a force on the seal on post-expansion elastic recovery. Additionally or alternatively, post-expansion elastic recovery of said portion may provide a contact seal between said portion and said other tubular.
According to a seventh aspect of the present invention, there is provided a method of sealing a connection between expandable tubulars, the method comprising the steps of:
providing a first expandable tubular and a second expandable tubular, one of the first and second tubulars having a male connecting portion and the other one of the first and second tubulars having a female connecting portion;
connecting the male and female connecting portions together;
expanding the first and second tubulars; and
permitting a relative movement between the male and female connecting portions, to bring said portions into sealing engagement.
During expansion of an expandable tubular, particularly when using a rotary expansion tool, the tubular may undergo an axial extension. Due to the different expansion mode, a second connected tubular can undergo axial contraction, as described above. By permitting and planning for a relative movement between the male and female connecting portions of the invention, this movement can be used to bring selected parts of the portions into sealing engagement. The permitted relative movement is preferably a relative axial movement or translation of one or both of the male and female connecting portions.
The seal may be achieved by permitting a direct sealing engagement or contact between the male and female connecting portions, which may be between selected parts of the portions such as cooperating ends, faces, shoulders or the like, such engagement providing a seal. Additionally or alternatively, a separate seal member, element or other seal material may be provided between the connecting portions, such as between ends, shoulders, faces or the like of the respective male and female connecting portions.
The first and second expandable tubulars may be adapted to be sealed both pre and post-expansion, with an enhanced sealing effect post-expansion due to said permitted relative movement.
According to an eighth aspect of the present invention, there is provided expandable tubing comprising:
first and second expandable tubulars, one of the first and second tubulars having a male connecting portion and the other a female connecting portion, the connecting portions adapted to be coupled together and expanded and whereby a relative movement between the male and female connecting portions is permitted on expansion, to bring said portions into sealing engagement.
The male and female connecting potions may be threaded and axially adjacent threads may overlap in a radial direction when the connecting portions are coupled together. This may ensure integrity of the expandable tubing.
It will be understood that in further aspects of the present invention, there may be provided a method of sealing a connection between expandable tubulars and expandable tubing combining the features of one or more of the above described aspects, or other features, of the present invention.
Embodiments of the present invention will now be described, by way of example only, with reference to the accompanying drawings, in which:
Turning firstly to
The expandable liner 10 is made up of a series of expandable tubulars or tubing sections coupled together. In
Turning now to
The dimensions of the liner sections 22, 24 and in particular the dimensions of the pin and box 32, 34 are selected such that a force is exerted on the seal 26 when the pin and box are mated as shown in
Other factors affecting the pre and post-expansion loading on the seal 26 include: a material of the first and/or second tubular; a pre-expansion yield strength of the first and/or second tubular; Young's Modulus (E) of the first and/or second tubular; at least one dimension of the first and/or second tubular such as a pre-expansion length of overlap between the tubulars, relative pre-expansion diameters/wall thicknesses and thus relative spacing between the first and second tubulars, in a particular embodiment, a relative pre-expansion spacing between said overlapping portions of the first and second tubulars; a desired post-expansion diameter/wall thickness of the first and/or second tubular; anticipated work hardening of the tubulars; an anticipated or desired degree of axial extension or contraction in length of the first and/or second tubular; and loading or forces experienced by the tubulars during the expansion process.
In contrast, the box 34 experiences a different expansion mode, being expanded by radially outward movement of the pin 32, which tends to axially contract in length. Accordingly, there is a relative axial movement of the overlapping portion 28 of the box 34 relative to the overlapping portion 30 of the pin 32 during expansion of the liner 10, causing the deformation illustrated in exaggerated fashion in
Radial separation can also occur where the pin 32 and box 34 are of similar materials. This is because the outer overlapping portion 28 of the box 34 is expanded to a larger diameter than the radially inner portion 30 of the pin 32, and there can be a greater post-expansion elastic recovery of the portion 30 of the pin 32 relative to the portion 28 of the box 34. Thus the effect may also be present where the liner 10 is expanded using a cone or mandrel or combination of cone and roller expansion tool.
By determining the extent of the bending caused by these effects and locating the seal 26 accordingly, sealing between the pin and box 32, 34 can be maintained post-expansion.
The end 40 of the box 34 also experiences “end effects”, tending to cause the box end 40 to elastically recover to a greater degree than a remainder of the liner section 24, after the expansion tool has passed through the section. The end effect can be utilised to enhance sealing between the pin and box 32, 34, as the recovery of the box end 40 provides a seal where it contacts the pin 32, and a seal may optionally be located at the pin end between the pin and box 32, 34.
The above described method may further comprise performing a simulation or analysis of expansion of the liner sections 22, 24 to determine an appropriate location for the seal 26 and/or the degree of separation, comprising determining a plurality of the parameters described above and performing the simulation based upon the selected parameters. This may be achieved by carrying out a finite element analysis (FEA), by constructing a finite element model and applying simulated loading to the model.
Turning now to
The liner 110 is provided without a seal such as the seal 26 of the liner 10, and bending effects similar to that described in relation to the liner 10 of
Turning now to
Turning now to
To ensure that a seal is maintained post-expansion, the threads on the pin and box 232, 234 are shaped so as to allow a degree of radial separation between the pin and box 232, 234 whilst maintaining sealing contact between the threads. This may be achieved by providing the pin and box 232, 234 with box shaped threads or, where the pin and box are tapered, with wedge shaped threads, where at least some flanks of the threads are perpendicular to a main, longitudinal axis of the liner 210. For example, trailing or load flanks of the pin 232 threads (when coupled pin-down to the box) and cooperating leading or stab-in flanks of the box 234 threads may be perpendicular to the liner axis, and/or vice versa. In this fashion, sealing contact between threads on the pin and box 232, 234 is maintained even where there is a separation on expansion.
Turning now to
Before expansion, there is an axial gap g4 between the leading end 344 of the pin 332 and the shoulder 346 on the box 334. However, it will be understood that the end 344 and shoulder 346 may be in contact. On expansion and as described above, the pin 332 of the liner 310 tends to extend in axial length, as described above. This brings the pin leading end 344 into sealing engagement (or into enhanced engagement) with the box shoulder 346, as illustrated in
It will be understood that the features of the liners 10, 110, 210 and 310 described above may be provided separately or in combination. For example, in a further alternative embodiment of the present invention, an expandable liner may be provided combining the features of all of the liners 10, 110, 210 and 310.
Various modifications may be made to the foregoing within the scope of the present invention.
For example, the step of exerting a force on the seal may be separate from the step of connecting the first and second tubulars together, and in embodiments of the invention, a mechanism may be provided for exerting a force on the seal. The mechanism may be moveable to exert a force on the seal and may be moveable in response to connection of the first and second tubulars together or may be separately actuated or operated.
The step of exerting a force on the seal may comprise compressing the seal axially or both radially and axially.
There may be a plurality of seals and the method may comprise locating at least one seal on each of the first and second expandable tubulars, or locating a plurality of seals on one or both of the first and second expandable tubulars.
The step of configuring the seal to maintain sealing may comprise locating a seal between said overlapping portions of the tubulars, the seal adapted to swell on exposure to an activating fluid. The seal may swell in the presence of a hydrocarbon based fluid such as an oil, water or water based fluid, or a combination thereof. The method may comprise selectively exposing the seal to the activating fluid. The seal may be initially isolated from the fluid, and the method may comprise exposing the seal to the fluid in a downhole environment. For example, the method may comprise running the tubulars into a borehole with the seal isolated from the activating fluid, and then exposing the seal to the activating fluid. The seal may be exposed in response to a predetermined pressure of activating fluid in a downhole environment, and the method may comprise providing an isolation member such as a disc or valve adapted to rupture or open in response to a determined pressure. In a further alternative, the method may further comprise exposing the seal during or on connection of the tubulars, or in a separate step, for example, by providing a mechanism which is actuatable to selectively expose the seal. In a still further alternative, where a seal is provided which, is adapted to swell on exposure to a hydrocarbon based activating fluid, the seal may be open to the environment prior to location in the downhole environment.
Number | Date | Country | Kind |
---|---|---|---|
0317395.2 | Jul 2003 | GB | national |
Number | Name | Date | Kind |
---|---|---|---|
2160263 | Fletcher | May 1939 | A |
4530527 | Holmberg | Jul 1985 | A |
4705307 | Chelette | Nov 1987 | A |
4706997 | Carstensen | Nov 1987 | A |
4707001 | Johnson | Nov 1987 | A |
4893844 | Chelette et al. | Jan 1990 | A |
5029906 | Chelette et al. | Jul 1991 | A |
6409175 | Evans et al. | Jun 2002 | B1 |
6554287 | Sivley et al. | Apr 2003 | B1 |
6607220 | Sivley, IV | Aug 2003 | B2 |
6745845 | Cook et al. | Jun 2004 | B2 |
6971685 | Hashem | Dec 2005 | B2 |
20020158469 | Mannella et al. | Oct 2002 | A1 |
20020163192 | Coulon et al. | Nov 2002 | A1 |
20030107213 | Baugh et al. | Jun 2003 | A1 |
20030107217 | Daigle et al. | Jun 2003 | A1 |
20030234538 | Hashem | Dec 2003 | A1 |
20040084901 | Church | May 2004 | A1 |
20040090068 | Evans et al. | May 2004 | A1 |
20050087983 | Verger et al. | Apr 2005 | A1 |
20050127673 | Simpson et al. | Jun 2005 | A1 |
20050212290 | Durand et al. | Sep 2005 | A1 |
20050236834 | Curley et al. | Oct 2005 | A1 |
20060006647 | Hashem et al. | Jan 2006 | A1 |
20060061099 | Evans et al. | Mar 2006 | A1 |
Number | Date | Country |
---|---|---|
1 106 778 | Jun 2001 | EP |
2 356 651 | May 2001 | GB |
2393467 | Mar 2004 | GB |
Number | Date | Country | |
---|---|---|---|
20050127672 A1 | Jun 2005 | US |