This technology relates generally to sealing fluid flow passages inside flow control devices, such as those particularly suited for use in high pressure oil and gas production and processing systems.
For example, a fluid end is used in many well servicing applications to contain high pressure, often corrosive and/or abrasive, fracturing fluids in the oil and gas industry. A fluid end typically has a manifold body and a number of components mounted and sealed to the body, such as the suction and discharge plugs, suction and discharge valve seats, stuffing box, discharge flange, and suction manifold; with those components either alone or sleeved as are illustratively described herein. Like the valves, operating a fluid end in the harsh oilfield conditions can cause erosion of the body resulting in leakage in a short amount of time. Repairing the body is also cumbersome and disruptive in the oilfield.
Improvements are needed in the internal sealing of high pressure flow devices to increase operating life while reducing downtime and operating cost. What is needed is a solution that transfers the erosion (corrosion and abrasion) from the high pressure fluid end body to the component sealed with the body. It is to those improvements that embodiments of this technology are directed as described in the illustrative embodiments and contemplated within the scope of the claims.
Initially, this disclosure is by way of example only, not by limitation. The illustrative constructions and associated methods disclosed herein are not limited to use or application for sealing any specific assembly or in any specific environment. That is, the disclosed technology is not limited to use in sealing fluid ends as described in the illustrative embodiments. Thus, although the instrumentalities described herein are for the convenience of explanation, shown and described with respect to exemplary embodiments, the skilled artisan understands that the principles herein may be applied equally in sealing other types of high pressure flow devices.
The fluid end body 201 typically has a first conduit 220 and a second conduit 221 formed within the body 201 that intersect to form an internal chamber 222. The first conduit 220 is typically orthogonal to the second conduit 221. The first conduit 220 may have aligned first and second sections 223 and 224 that are situated on opposite sides of the internal chamber 222. The first section 223 may be referred to as a discharge bore, and the second section 224 may be referred to as an intake bore. Likewise, the second conduit 221 may have aligned third and fourth sections 225 and 226 that are situated on opposite sides of the internal chamber 222. The third section 225 may be referred to as a plunger bore, and the fourth section 226 may be referred to as a suction bore. The sections 223, 224, 225, and 226 each may independently interconnect the internal chamber 222 to an external surface 227 of the fluid end 200.
A plunger 228 reciprocates within the fluid end body 201 to increase the pressure of fluid being discharged from the fluid end 200. As shown in
There are sealing areas in the fluid end 200 that experience erosion during operation. For example, a number of components seal to the fluid end body 201. As discussed above, the sacrificial member for erosion is the fluid end body 201 instead of the less complex and less expensive mating component.
For example, the fluid end body 201 defines a discharge opening 202 that opens into the discharge bore 223. The discharge opening 202 depicted in these embodiments is sealed closed by inserting a closure or discharge plug or cover 204 into the discharge bore 223 and securing it by advancing a threaded retaining nut 206 into the body 201. The retaining nut 206 may also be referred to as a retainer. The discharge plug 204 supports a seal 208 that seals against the walls of the fluid end body 201 defining the discharge bore 223.
In these illustrative embodiments the groove 207 is rectangular but the contemplated embodiments are not so limited. The skilled artisan understands that the configuration of the groove 207 is largely determined by what shape is required to mount the type of seal selected. The groove 207 intersects an outer surface 215 of the discharge plug 204, permitting the seal 208 to be sized so that a portion not mounted within the groove 207 extends beyond the outer surface 215 to pressingly engage against the walls of the fluid end body 201 defining the discharge bore 223. In this construction the highly-pressurized corrosive and/or abrasive fluid can be injected between the seal 208 and walls defining the discharge bore 223, causing erosion of the seal surface formed by the walls defining the discharge bore 223.
Fluid end bodies have conventionally been made of heat-treated carbon steel, so it was not uncommon for the fluid end body 201 to crack before any sacrificial erosion of the body progressed to the point of creating leakage between the discharge plug 204 and the discharge bore 223. However, progress in the technology has introduced stainless steel body construction resulting in a significantly longer operating life. As a result, this erosion is no longer negligible but is instead a consideration for reducing erosion in modern fluid end construction. One leading source of discharge bore 223 erosion in conventional fluid ends is the seal 208 mounted in the discharge plug 204 and extending therefrom to seal against a sealing surface formed by the fluid end body 201. The technology disclosed herein is configured to transfer that erosion wear from the fluid end body 201 to the less complex and less expensive discharge plug 204.
The discharge opening 235 is sealed closed by inserting a closure or discharge plug 236 into the discharge opening 235 and securing it in place by advancing a threaded retaining nut 238, as shown in
The seal construction depicted in
Returning to
Continuing with
Continuing with
The plunger bore 252 includes a first segment 312 and a second segment 314. The first segment 312 is positioned closer to the internal chamber 304 and the suction bore 247 than the second segment 314. The second segment 314 has a greater diameter than the first segment 312. Threads may be formed in the walls of the fluid end body 232 surrounding at least a portion of the second segment 314. The threads may mate with threads formed on the retaining nut 256. An endless groove or recess 257 is formed in the walls of the fluid end body 232 surrounding the first segment 312. The groove 257 is configured to house a seal 260, as shown in
Continuing with
Continuing with
The diameter D2 is constant along at least a portion of the length of the second portion 318. The diameter D2 may be constant along the entire length of the second portion 318, with the exception of one or more grooves formed in the outer surface of the second portion 318 for housing a seal or receiving lubrication. The area of the outer surface of the sleeve 254 having the one or more grooves may be referred to as a third portion of the sleeve 254. An inner diameter of the third portion may be the same as the inner diameter of the second portion 318.
Turning back to
Continuing with
Similarly, an outer surface of the first portion 316 is joined to an outer surface of the second portion 318 at a right angle. In alternative embodiments, the first portion may be joined to the second portion by a tapered portion, as shown for example in
Continuing with
Importantly, the simplified seal construction depicted in
Returning to
The stuffing box sleeve 346 comprises a first portion 348 joined to a second portion 350 by a tapered portion 352. The first portion 348 is installed within a first segment 354 of the plunger bore 344 and the second portion 350 is installed within a second segment 356 of the plunger bore 344. A groove 358 is formed in the walls of the fluid end body 342 surrounding the first segment 354. The groove 358 may be identical to the groove 257. A seal 360 is shown installed within the groove 358 and engaging an outer sealing surface of the first portion 348. A seal 362 may also be installed within a groove 364 formed in an outer surface of the second portion 350 of the sleeve 346. Such area of the sleeve 346 may be referred to as a third portion of the sleeve 346.
As the stuffing box sleeve 346 is inserted into the plunger bore 344, air pressure forms in a space defined in the clearance gap between the outer diameter of the stuffing box sleeve 346 and the walls of the fluid end body 342 defining the plunger bore 344 and between the seal 360 and the seal 362 at the opposing end of the stuffing box sleeve 346. The air pressure exerts a force urging the stuffing box sleeve 346 out of the plunger bore 344, complicating manufacture and degrading the seal integrity at the lower end of the stuffing box sleeve 346. A breather opening 284 can be formed between that space and ambient space above the stuffing box sleeve 346 to vent the air pressure.
Other configurations can be employed as well. For example, the skilled artisan understands that a conventional stuffing box can be employed that combines a stuffing box sleeve and a retaining nut, unitarily, into one component. In other conventional constructions, a stuffing box may be used in combination with a seal carrier insert that mates with the stuffing box and provides the groove for mounting the seal. In yet other contemplated embodiments, a stuffing box sleeve can be modified to a construction combining a substantially cylindrical-shaped stuffing box to which is mated a seal surface insert that provides the sealing surface.
Returning momentarily to
With reference to
With reference to
Continuing with
Like the discharge and suction plugs 236 and 244 shown in
Turning to
Continuing with
Continuing with
The diameter D2 is constant along at least a portion of the length of the second portion 450. The diameter D2 may be constant along the entire length of the second portion 450, with the exception of one or more grooves formed in the outer surface of the second portion 450 for housing a seal or for providing space for lubrication to be delivered to the interior of the housing 406. The outer surface of the sleeve 446 having the one or more grooves may be referred to as a third portion of the sleeve 446. An inner diameter of the third portion may be the same as the inner diameter of the second portion 450, with the exception of one or more lubrication holes.
The second portion 450 may further comprise one or more passages 451 interconnecting the inner and outer surfaces of the second portion 450, as shown in
The first and second portions 448 and 450 of the sleeve 446 define a central passage. The central passage interconnects a first and second outer surface 460 and 462 of the sleeve 446. The first outer surface 460 may be joined to the first portion 448 of the sleeve 446. The first surface 460 may join the outer surface of the first portion 448 via the tapered surface 472, shown in
Continuing with
Turning to
Continuing with
Continuing with
Turning to
Another embodiment of a stuffing box sleeve 512 is shown installed within the plunger bore 502. The sleeve 512 is identical to the sleeve 446, but may have a shorter first portion 514 and a longer second portion 516. When the sleeve 512 is installed within the plunger bore 502, a base 518 of the second portion 516 forms a third wall of the groove 504. A seal 520 installed within the groove 504 may be identical to the seal 454, shown in
Turning to
Continuing with
The sleeve 622 defines a central passage 630 and has an internal shoulder 632 formed therein. The internal shoulder 632 is positioned closer to the first surface 624 than the second surface 626 of the sleeve 622. A plunger packing 634 is installed within the sleeve 622 through the second surface 626 until it abuts the internal shoulder 632. The plunger packing 634 comprises a plurality of packing seals 635.
Similar to the other sleeve embodiments disclosed herein, no grooves are formed in the outer intermediate surface 628 of the sleeve 622 for housing a seal. Likewise, no threads are formed in the outer intermediate surface 628 for engaging the housing 602 or another component. The sleeve 622 may be made of steel, and not be coated with any abrasive material. If the sleeve 622 begins to erode over time, the sleeve 622 may be removed and replaced with a new sleeve.
Continuing with
The housing 602 further comprises an internal shoulder 640 formed within the third section 618 between the groove 636 and the internal chamber 606. Axial movement of the sleeve 622 within the third section 618 is prevented by engagement of the first surface 624 of the sleeve 622 with the internal shoulder 640. When installed within the third section 618, no portion of the sleeve 622 projects from the external surface 604 of the housing 602.
The sleeve 622 is held within the third section 618 by a retainer 650. The retainer 650 has a threaded outer surface 652 and defines a threaded central opening 654. The threaded outer surface 652 mates with internal threads 656 formed in the walls of the housing 602. When the retainer 650 is installed within the housing 602 a first surface 658 of the retainer 650 abuts the second surface 626 of the sleeve 622, but the retainer 650 does not engage the plunger packing 634.
Continuing with
In alternative embodiments, the housing 602 may be configured to use one of the other embodiments of retainers disclosed herein. The other components installed within the housing 602 and shown in
In alternative embodiments, the sleeve may have different shapes and sizes but still function to form a second sidewall of the groove. In further alternative embodiments, the suction and discharge plugs may be configured to form one of the sidewalls of a two-walled groove formed in the housing.
Summarizing, this technology contemplates a high pressure fluid flow apparatus constructed of a body defining a flow passage, a closure mounted to the body, and a means for sealing between the body and the closure. For purposes of this description and meaning of the claims the term “closure” means a component that is attached or otherwise joined to the body to provide a high-pressure fluid seal between the body and the closure. In some embodiments such as the described fluid end embodiments “closure” encompasses nonmoving components joined to the body to seal an opening such as but not limited to the discharge plug, suction plug, discharge valve seat, suction valve seat, stuffing box sleeve, discharge flange, suction manifold, and the like. The term “means for sealing” means the described structures and structural equivalents thereof that mount a seal to a body instead of a mating closure to transfer the wear in comparison to previously attempted solutions from the body to the closure. “Means for sealing” expressly does not encompass previously attempted solutions that mount a seal to the closure to extend therefrom and seal against the body.
The various features and alternative details of construction of the apparatuses described herein for the practice of the present technology will readily occur to the skilled artisan in view of the foregoing discussion, and it is to be understood that even though numerous characteristics and advantages of various embodiments of the present technology have been set forth in the foregoing description, together with details of the structure and function of various embodiments of the technology, this detailed description is illustrative only, and changes may be made in detail, especially in matters of structure and arrangements of parts within the principles of the present technology to the full extent indicated by the broad general meaning of the terms in which the appended claims are expressed.
Number | Name | Date | Kind |
---|---|---|---|
X589725 | Hodge et al. | Sep 1897 | |
1316539 | Ford | Jun 1919 | A |
1822682 | Weiger | Sep 1931 | A |
1867279 | Price | Jul 1932 | A |
1995395 | Mohr | Mar 1935 | A |
2713522 | Petch | Jul 1955 | A |
2756960 | Church | Jul 1956 | A |
2856857 | Saalfrank | Oct 1958 | A |
3053500 | Atknison | Sep 1962 | A |
3146724 | Cornelsen | Sep 1964 | A |
3152787 | Timmons | Oct 1964 | A |
3173648 | McGuire et al. | Mar 1965 | A |
3179121 | Bredtschneider et al. | Apr 1965 | A |
3219311 | Siver | Nov 1965 | A |
3244424 | Cope | Apr 1966 | A |
3257095 | Siver | Jun 1966 | A |
3257952 | McCormick | Jun 1966 | A |
3269698 | Koch | Aug 1966 | A |
3373695 | Yohpe | Mar 1968 | A |
3427988 | Redman et al. | Feb 1969 | A |
3474808 | Elliott | Oct 1969 | A |
3504888 | Bates, Jr. et al. | Apr 1970 | A |
3589387 | Raymond | Jun 1971 | A |
3679332 | Yohpe | Jul 1972 | A |
3698726 | Schettler | Oct 1972 | A |
3702624 | Fries | Nov 1972 | A |
3831900 | Matousek et al. | Aug 1974 | A |
4047850 | Berthelot | Sep 1977 | A |
4077102 | Smith | Mar 1978 | A |
4170214 | Gill et al. | Oct 1979 | A |
4363463 | Moon, Jr. | Dec 1982 | A |
4388050 | Schuller | Jun 1983 | A |
4467703 | Redwine et al. | Aug 1984 | A |
4470771 | Hall et al. | Sep 1984 | A |
4520837 | Cole et al. | Jun 1985 | A |
4768933 | Stachowiak | Sep 1988 | A |
4771801 | Crump et al. | Sep 1988 | A |
4773833 | Wilkinson et al. | Sep 1988 | A |
4778347 | Mize | Oct 1988 | A |
4861241 | Gamboa et al. | Aug 1989 | A |
4878815 | Stachowiak | Nov 1989 | A |
4948349 | Koiwa | Aug 1990 | A |
4984970 | Eickmann | Jan 1991 | A |
5059101 | Valavaara | Oct 1991 | A |
5073096 | King et al. | Dec 1991 | A |
5145340 | Allard | Sep 1992 | A |
5207242 | Daghe et al. | May 1993 | A |
5226445 | Surjaatmadja | Jul 1993 | A |
5362215 | King | Nov 1994 | A |
5370148 | Shafer | Dec 1994 | A |
5507219 | Stogner | Apr 1996 | A |
5524902 | Cornette | Jun 1996 | A |
5626345 | Wallace | May 1997 | A |
D383053 | Schrader et al. | Sep 1997 | S |
5685519 | Bircann et al. | Nov 1997 | A |
6000764 | Dokas | Dec 1999 | A |
6164318 | Dixon | Dec 2000 | A |
6167959 | Bassinger et al. | Jan 2001 | B1 |
6257626 | Campau et al. | Oct 2001 | B1 |
6382940 | Blume | May 2002 | B1 |
6419459 | Sibbing | Jul 2002 | B1 |
6544012 | Blume | Apr 2003 | B1 |
6641112 | Antoff et al. | Nov 2003 | B2 |
6910871 | Blume | Jun 2005 | B1 |
7140211 | Tremblay | Nov 2006 | B2 |
7168440 | Blume | Jan 2007 | B1 |
7186097 | Blume | Mar 2007 | B1 |
7290560 | Orr et al. | Nov 2007 | B2 |
7296591 | Moe et al. | Nov 2007 | B2 |
7335002 | Vicars | Jun 2008 | B2 |
7506574 | Jensen et al. | Mar 2009 | B2 |
7513759 | Blume | Apr 2009 | B1 |
D616966 | Angell | Jun 2010 | S |
7789133 | McGuire | Sep 2010 | B2 |
7828053 | McGuire et al. | Nov 2010 | B2 |
7845413 | Shampine et al. | Dec 2010 | B2 |
D631142 | Angell | Jan 2011 | S |
7866346 | Walters | Jan 2011 | B1 |
7891374 | Vicars | Feb 2011 | B2 |
7963502 | Lovell et al. | Jun 2011 | B2 |
8100407 | Stanton et al. | Jan 2012 | B2 |
8317498 | Gambier et al. | Nov 2012 | B2 |
8360094 | Steinbock et al. | Jan 2013 | B2 |
8365754 | Riley et al. | Feb 2013 | B2 |
8528462 | Pacht | Sep 2013 | B2 |
8528585 | McGuire | Sep 2013 | B2 |
8701546 | Pacht | Apr 2014 | B2 |
D731035 | Lo Cicero | Feb 2015 | S |
9010412 | McGuire | Apr 2015 | B2 |
D737497 | Burgess et al. | Aug 2015 | S |
9188121 | Dille | Nov 2015 | B1 |
D748228 | Bayyouk et al. | Jan 2016 | S |
9260933 | Artherholt et al. | Feb 2016 | B2 |
9328745 | Bartlok et al. | May 2016 | B2 |
9371919 | Forrest et al. | Jun 2016 | B2 |
9416887 | Blume | Aug 2016 | B2 |
9435454 | Blume | Sep 2016 | B2 |
9534473 | Morris et al. | Jan 2017 | B2 |
9631739 | Belshan et al. | Apr 2017 | B2 |
D787029 | Bayyouk et al. | May 2017 | S |
9732746 | Chandrasekaran et al. | Aug 2017 | B2 |
9822894 | Bayyouk et al. | Nov 2017 | B2 |
D806241 | Swinney et al. | Dec 2017 | S |
10184470 | Barnett, Jr. | Jan 2019 | B2 |
10221847 | Dyer | Mar 2019 | B2 |
10519950 | Foster | Dec 2019 | B2 |
10914171 | Foster | Feb 2021 | B2 |
20020166588 | Dean | Nov 2002 | A1 |
20040170507 | Vicars | Sep 2004 | A1 |
20040234404 | Vicars | Nov 2004 | A1 |
20050151107 | Shu | Jul 2005 | A1 |
20050200081 | Stanton et al. | Sep 2005 | A1 |
20060002806 | Baxter et al. | Jan 2006 | A1 |
20060027779 | McGuire et al. | Feb 2006 | A1 |
20080006089 | Adnan et al. | Jan 2008 | A1 |
20080008605 | Bauer et al. | Jan 2008 | A1 |
20080093361 | Kennedy et al. | Apr 2008 | A1 |
20080279706 | Gambier et al. | Nov 2008 | A1 |
20100243255 | Luharuka et al. | Sep 2010 | A1 |
20110079302 | Hawes | Apr 2011 | A1 |
20110173814 | Patel | Jul 2011 | A1 |
20110189040 | Vicars | Aug 2011 | A1 |
20110206547 | Kim et al. | Aug 2011 | A1 |
20110236238 | Cordes et al. | Sep 2011 | A1 |
20120063936 | Baxter et al. | Mar 2012 | A1 |
20120141308 | Saini et al. | Jun 2012 | A1 |
20120187321 | Small | Jul 2012 | A1 |
20130020521 | Byrne | Jan 2013 | A1 |
20130112074 | Small | May 2013 | A1 |
20130202458 | Byrne et al. | Aug 2013 | A1 |
20130319220 | Luharuka et al. | Dec 2013 | A1 |
20140127062 | Buckley et al. | May 2014 | A1 |
20140196883 | Artherholt et al. | Jul 2014 | A1 |
20140348677 | Moeller et al. | Nov 2014 | A1 |
20150084335 | Farrell et al. | Mar 2015 | A1 |
20150132157 | Whaley et al. | May 2015 | A1 |
20150144826 | Bayyouk et al. | May 2015 | A1 |
20160123313 | Simmons | May 2016 | A1 |
20160160848 | Toppings et al. | Jun 2016 | A1 |
20170089473 | Nowell et al. | Mar 2017 | A1 |
20170002947 | Bayyouk et al. | May 2017 | A1 |
20170204852 | Barnett, Jr. | Jul 2017 | A1 |
20170211565 | Morreale | Jul 2017 | A1 |
20180017173 | Nowell et al. | Jan 2018 | A1 |
20180313456 | Bayyouk et al. | Nov 2018 | A1 |
20190011051 | Yeung | Jan 2019 | A1 |
20190128104 | Graham | May 2019 | A1 |
Entry |
---|
U.S. Patent and Trademark Office File History for U.S. Pat. No. 10,591,070, 168 pages, Alexandria, VA—See USPTO Records. |
Exhibit B—Gradner Denver, Well Servicing Pump, Model GD-3000 Operating and Service Manual, dated Apr. 2011, (GD-3000), 44 pages. |
Exhibit C—National Oilwell Varco 267Q-6M Quintuplex Plunger Pump Parts List, issued Sep. 6, 2000 and revised Jul. 21, 2008 (NOV-267Q), 13 pages. |
Exhibit D (Part 1)—Declaration of William D. Marscher, PE, 209 pages. |
Exhibit D (Part 2)—Declaration of William D. Marscher, PE, 124 pages. |
Exhibit E—U.S. Patent and Trademark Office File History for U.S. Appl. No. 62/234,483, 45 pages, Alexandria, VA. |
Exhibit F—U.S. Patent and Trademark Office File History for U.S. Appl. No. 62/315,343, 41 pages, Alexandria, VA. |
Exhibit G—U.S. Patent and Trademark Office File History for U.S. Appl. No. 62/318,542, 44 pages, Alexandria, VA. |
Exhibit H—U.S. Patent and Trademark Office File History for U.S. Appl. No. 62/346,915, 41 pages, Alexandria, VA. |
U.S. Patent and Trademark Office File History for U.S. Pat. No. 10,591,070, 353 pages, Alexandria, VA—See USPTO Records. |
U.S. Patent and Trademark Office File History for U.S. Appl. No. 15/719,124, 183 pages, Alexandria, VA—See USPTO Records. |
Exhibit K—Susan Woods, Groove Milling, Cutting Tool Engineering, published Aug. 1, 2012, 11 pages. |
Exhibit L—“Weir SPM General Catalog” (2009), 40 pages. |
Exhibit M—Groovex, “Groove Milling, High Precision Tools for Groove Milling” brochure, Edition 04, dated Dec. 2012, 24 pages. |
Exhibit N—Ricky Smith & R. Keith Mobley, Rules of Thumb for Maintenance and Reliability Engineers, 239-250 (2008), 15 pages. |
Exhibit O—Ross Mackay, “Process engineering: Properly seal that pump”, Chemical Processing, dated May 17, 2005, 11 pages. |
Exhibit P—Vargus Ltd., “Groovex Groove milling”, YOUTUBE (Dec. 12, 2011, https://www.youtube.com/watch?v=vrFzHJUXjvk, 68 pages. |
Exhibit Q—Paresh Girdhar, Octo Moniz, & Steve Mackay, Centrifugal Pump Design, “Plant and Process Engineering 360°”, 521-536 (2004), 21 pages. |
Exhibit R—Paresh Girdhar, Octo Moniz, & Steve Mackay, Centrifugal Pump Design and Construction, Practical “Centrifugal Pumps: Design, Operation and Maintenance”, 18-47 (2005), 33 pages. |
Exhibit S—Gardner Denver, “Well Servicing Pump”, Model HD-2250 Operating and Service Manual, dated Jan. 2005, 44 pages. |
Exhibit T—Robert Crosier, “Flush Free Sealing Benefits”, Empowering Pumps & Equipment, dated Oct. 3, 2011, 5 pages. |
Exhibit U—Cat “Quintuplex Well Stimulation Pump”, WS255 (2013), 2 pages. |
Exhibit V—Oxford “Dictionary of Mechanical Engineering”, excerpted (2013), 10 pages. |
Exhibit W—United States Patent and Trademark Office, Before the Patent Trial and Appeal Board, “Cizion, LLC d/b/a Vulcan Industrial Manufacturing, Petitioner v. Kerr Maching Co., Patent Owner” Case PGR2020-00065 U.S. Pat. No. 10,591,070, Petition for Post-Grant Review of U.S. Pat. No. 10,591,070 Under 35 U.S.C. Section 321-329 and 37 C.F.R. Section 42.200 ET SEQ.—197 pages. |
International Search Authority “PCT International Search Report”, dated Mar. 31, 2020, 3 pages, Korean Intellectual Property Office, Republic of Korea. |
Fluid end assemblies like those disclosed in Figure 3 of the current application and Figure 11 of the parent application, U.S. Patent Publication No. 2017/0089473, were offered for sale in the United States more than 1 year prior to Sep. 28, 2017. |
Exhibit AB includes cross-sectional views of fluid end assemblies known in the art prior to Sep. 29, 2015, 4 pages. |
Exhibit AC includes side views of valve seats known in the art prior to Sep. 29, 2015, 2 pages. |
Exhibit AD is a cross-sectional view of a plunger end of a fluid assembly known in the art prior to Sep. 29, 2015, 1 page. |
Exhibit AE includes an engineering drawing and pictures of a mud pump known in the art prior to Sep. 29, 2015, 4 pages. |
Exhibits AF-AI include photos of a power end and fluid end known in the art prior to Dec. 11, 2017, 4 pages. |
Exhibit AJ includes an engineering drawing of a mud pump known in the art prior to Jul. 14, 2017. |
Wikipedia, Washer (hardware), 2017, first page; 10 pages. |
Exhibit AK is a photograph of a fluid end offered for sale in the United States more than one year prior to Jun. 10, 2019, and also includes patent drawing of a fluid end similar to that shown in the photograph. The drawing was included in U.S. Appl. No. 62/532,574, filed Jul. 14, 2017, 2 pages. |
Number | Date | Country | |
---|---|---|---|
20220260161 A1 | Aug 2022 | US |
Number | Date | Country | |
---|---|---|---|
63185646 | May 2021 | US | |
62959260 | Jan 2020 | US | |
62947369 | Dec 2019 | US | |
62346915 | Jun 2016 | US | |
62318542 | Apr 2016 | US | |
62315343 | Mar 2016 | US | |
62234483 | Sep 2015 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15719124 | Sep 2017 | US |
Child | 16574918 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16574918 | Sep 2019 | US |
Child | 16814267 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 17120121 | Dec 2020 | US |
Child | 17738189 | US | |
Parent | 16814267 | Mar 2020 | US |
Child | 17120121 | US | |
Parent | 15280642 | Sep 2016 | US |
Child | 15719124 | US |