Sealing member for prosthetic heart valve

Information

  • Patent Grant
  • 10973629
  • Patent Number
    10,973,629
  • Date Filed
    Tuesday, August 28, 2018
    5 years ago
  • Date Issued
    Tuesday, April 13, 2021
    3 years ago
Abstract
A prosthetic heart valve can include a frame, a valve component, and a sealing member. The frame can have an inflow end portion, an outflow end portion, an intermediate portion disposed between the inflow and outflow end portions, and a plurality of struts. The frame can be radially compressible and expandable between a radially-compressed configuration and a radially-expanded configuration. The valve component can be disposed within and coupled to the frame and have a plurality of leaflets. The sealing member can have a plurality of ribs and a plurality of drapes. The ribs can be coupled to and extend radially outwardly from the frame when the frame is in the radially-expanded configuration. The drapes can be coupled to and extend radially between the frame and the ribs. The sealing member can be configured to reduce or prevent perivalvular leakage around the prosthetic heart valve.
Description
FIELD

The present disclosure relates to implantable, expandable prosthetic devices and to methods and apparatuses for such prosthetic devices.


BACKGROUND

The human heart can suffer from various valvular diseases. These valvular diseases can result in significant malfunctioning of the heart and ultimately require replacement of the native valve with an artificial valve. There are several known artificial valves and several known methods of implanting these artificial valves in humans. Because of the drawbacks associated with conventional open-heart surgery, percutaneous and minimally-invasive surgical approaches are garnering intense attention. In one technique, a prosthetic heart valve is configured to be implanted in a much less invasive procedure by way of catheterization. For example, collapsible transcatheter prosthetic heart valves can be compressed and percutaneously introduced in the compressed state with a delivery apparatus and expanded to a functional size at the desired position. A challenge in transcatheter prosthetic heart valves is control of perivalvular leakage around the valve, which can occur for a period of time following initial implantation.


SUMMARY

Disclosed herein are exemplary embodiments of prosthetic heart valves with sealing members. The sealing members can, for example, reduce and/or eliminate perivalvular leakage.


In one representative embodiment, a prosthetic heart valve can comprise a frame, a valve component, and a sealing member.


In some embodiments, the frame can have an inflow end portion, an outflow end portion, an intermediate portion disposed between the inflow and outflow end portions, and a plurality of struts. The frame can be radially compressible and expandable between a radially-compressed configuration and a radially-expanded configuration.


In some embodiments, the valve component can be disposed within and coupled to the frame and have a plurality of leaflets.


In some embodiments, the sealing member can have a plurality of ribs and a plurality of drapes. The ribs can be coupled to and extend radially outwardly from the frame when the frame is in the radially-expanded configuration. The drapes can be coupled to and extend radially between the frame and the ribs. The sealing member can be configured to reduce or prevent perivalvular leakage around the prosthetic heart valve.


In some embodiments, each of the ribs includes a first end portion connected to the inflow end portion of the frame and a second end portion connected to the intermediate portion of the frame.


In particular embodiments, the struts of the frame form rows of junctions where the struts are connected to each other, the first end portions of the ribs are connected to one row of junctions, and the second end portions of the ribs are connected to another row of junctions spaced from the one row of junctions.


In certain embodiments, the first end portion of each rib is circumferentially offset relative to the second end portion of the rib when the prosthetic heart valve is in the radially-expanded configuration.


In some embodiments, the first end portions of adjacent ribs are coupled to a first apex of the frame, and the second end portions of the adjacent ribs are coupled to a second apex of the frame.


In one particular embodiment, the ribs of the sealing member are coupled together in a zig-zag or undulating pattern extending circumferentially around the frame.


In some embodiments, the prosthetic heart valve further comprises a plurality of flexible cords connected to and extending between the frame and the ribs of the sealing member.


In certain embodiments, the cords are connected to the ribs at intermediate portions of the ribs disposed between the first and second end portions of the ribs.


In some embodiments, the prosthetic heart valve further comprises a skirt mounted on the frame, and the drapes have inner longitudinally-extending edges sutured to the skirt and outer longitudinally-extending edges secured to the ribs.


In particular embodiments, the drapes of the sealing member are first drapes, and the sealing member further comprises a plurality of second drapes that are coupled to the frame and the ribs and that are circumferentially disposed between adjacent ribs and the first drapes.


In some embodiments, the ribs and the drapes extend longitudinally along the frame.


In certain embodiments, the drapes comprise PET, PTFE, ePTFE, polyurethane, or polyester.


In some embodiments, the frame is at least partially self-expandable from the radially-compressed configuration to the radially-expanded configuration.


In certain embodiments, the frame is at least partially mechanically expandable from the radially-compressed configuration to the radially-expanded configuration.


In another representative embodiment, a prosthetic heart valve can comprise a frame, a valve component, and a sealing member. The sealing member can include a plurality of ribs, a plurality of first drapes, and a plurality of second drapes. The ribs can be coupled to and extend radially outwardly from the frame when the frame is in the radially-expanded configuration. The first drapes can be coupled to the frame and the ribs, be circumferentially aligned with the ribs, and radially extend between the frame and the ribs. The second drapes can be coupled to the frame, the ribs, and the first drapes.


In some embodiments, each of the first drapes is connected to a respective rib, and each of the second drapes extends circumferentially between adjacent ribs.


In particular embodiments, the ribs and the first drapes extend longitudinally along the frame.


In one embodiment, the first drapes extend from the frame in a first plane, and the second drapes extend from the frame in a second plane that is at least substantially perpendicular to the first plane.


In some embodiments, the prosthetic heart valve further comprises a plurality of flexible cords that are coupled to and extend between the frame and the ribs, and the second drapes are mounted to the cords.


In yet another representative embodiment, a prosthetic heart valve can comprise a frame, a valve component, and a sealing member. The sealing member can include a plurality of ribs, a plurality of drapes, and one or more cords. The ribs can be coupled to and extend radially outwardly from the frame when the frame is in the radially-expanded configuration. The drapes can be coupled to and extend radially between the frame and the ribs. The cords can be coupled to the frame and the ribs so as to limit radial expansion of the ribs relative to the frame. The sealing member can be configured to reduce or prevent perivalvular leakage around the prosthetic heart valve.


The various innovations of this disclosure can be used in combination or separately. This summary is provided to introduce a selection of concepts in a simplified form that are further described below in the detailed description. This summary is not intended to identify key features or essential features of the claimed subject matter, nor is it intended to be used to limit the scope of the claimed subject matter. The foregoing and other objects, features, and advantages of the disclosure will become more apparent from other portions of this disclosure, including the detailed description, drawings, claims, and abstract.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 depicts a prosthetic heart valve with a sealing member, according to one embodiment.



FIG. 2 depicts a frame and the sealing member (only partially shown) of the prosthetic heart valve of FIG. 1 in a radially-expanded configuration.



FIG. 3 depicts the frame and the sealing member (only partially shown) of the prosthetic heart valve of FIG. 1 in a radially-compressed configuration.



FIG. 4 depicts details of the sealing member of the prosthetic heart valve of FIG. 1.



FIG. 5 depicts the prosthetic heart valve of FIG. 1 implanted in a native aortic valve of a heart (shown in partial cross-section).



FIG. 6 depicts the prosthetic heart valve of FIG. 1 with a sealing member, according to another embodiment.



FIG. 7 depicts a prosthetic heart valve with a sealing member, according to yet another embodiment.





DETAILED DESCRIPTION

General Considerations


For purposes of this description, certain aspects, advantages, and novel features of the embodiments of this disclosure are described herein. The disclosed methods, apparatus, and systems should not be construed as being limiting in any way. Instead, the present disclosure is directed toward all novel and nonobvious features and aspects of the various disclosed embodiments, alone and in various combinations and sub-combinations with one another. The methods, apparatus, and systems are not limited to any specific aspect or feature or combination thereof, nor do the disclosed embodiments require that any one or more specific advantages be present or problems be solved.


Although the operations of some of the disclosed embodiments are described in a particular, sequential order for convenient presentation, it should be understood that this manner of description encompasses rearrangement, unless a particular ordering is required by specific language set forth below. For example, operations described sequentially may in some cases be rearranged or performed concurrently. Moreover, for the sake of simplicity, the attached figures may not show the various ways in which the disclosed methods can be used in conjunction with other methods. Additionally, the description sometimes uses terms like “provide” or “achieve” to describe the disclosed methods. These terms are high-level abstractions of the actual operations that are performed. The actual operations that correspond to these terms may vary depending on the particular implementation and are readily discernible by one of ordinary skill in the art.


As used in this application and in the claims, the singular forms “a,” “an,” and “the” include the plural forms unless the context clearly dictates otherwise. Additionally, the term “includes” means “comprises.” Further, the term “coupled” generally means physically, mechanically, chemically, magnetically, and/or electrically coupled or linked and does not exclude the presence of intermediate elements between the coupled or associated items absent specific contrary language.


As used herein, the term “proximal” refers to a position, direction, or portion of a device that is closer to the user and further away from the implantation site. As used herein, the term “distal” refers to a position, direction, or portion of a device that is further away from the user and closer to the implantation site. Thus, for example, proximal motion of a device is motion of the device away from the implantation site and toward the user (e.g., out of the patient's body), while distal motion of the device is motion of the device away from the user and toward the implantation site (e.g., into the patient's body). The terms “longitudinal” and “axial” refer to an axis extending in the proximal and distal directions, unless otherwise expressly defined.


As used herein, the terms “integrally formed” and “unitary construction” refer to a construction that does not include any welds, fasteners, or other means for securing separately formed pieces of material to each other.


As used herein, the term “approximately” means the listed value and any value that is within 10% of the listed value. For example, “approximately 100 degrees” means any angle between 90-110 degrees, inclusive.


Exemplary Embodiments

Disclosed herein are exemplary embodiments of prosthetic heart valves with sealing members. The sealing members can, for example, reduce and/or eliminate perivalvular leakage (“PVL”).


In some embodiments, a sealing member can comprise one or more ribs that extend radially outwardly from a frame of the prosthetic heart valve. In certain embodiments, the sealing member further comprises one or more drapes extending radially between the ribs and the frame.


In particular embodiments, the ribs and/or the drapes are flexible such the sealing member can conform to the anatomy of a native heart valve annulus. In this manner, the sealing member can reduce and/or eliminate PVL between a prosthetic heart valve and the native annulus.


In some embodiments, a sealing member can include a plurality of cords that are coupled to the ribs and the frame of the prosthetic heart valve. The cords can, for example, retain the position of the ribs relative to the frame.


In some embodiments, a sealing member can comprise first and second drapes. The first drapes can extend radially between the ribs and the frame of the prosthetic heart valve. The second drapes can be coupled to and extend radially outwardly from the frame and can extend circumferentially between the first drapes.



FIGS. 1-6 show an exemplary embodiment of a prosthetic heart valve 100 and its components. Referring to FIG. 1, the prosthetic heart valve 100 can have four main components: a stent or frame 102, a valve structure 104, a skirt 106, and a perivalvular sealing means or sealing member 108. The frame 102 can be annular and can be configured to support the other components of the prosthetic heart valve 100. The valve structure 104 can be coupled to and disposed at least partially within the frame 102 and can be configured to regulate blood flow in one direction through the prosthetic heart valve 100. The skirt 106 can be coupled to the frame 102 and can be disposed on a radially-inwardly facing surface (as shown) and/or a radially-outwardly facing surface of the frame 102. The skirt 106 can be configured to reduce and/or prevent blood from flowing around the valve structure 104 and through the frame 102. The sealing member 108 can be coupled to and extend radially outwardly from the frame and/or the skirt 106. The sealing member 108 can be configured to reduce and/or eliminate PVL around the valve. Additional details of these components are provided below.


Referring to FIG. 2, the frame 102 can have an inflow end portion 110, an outflow end portion 112, and an intermediate portion 114 disposed between the inflow and outflow end portions 110, 112. The prosthetic heart valve 100 can define a longitudinal axis extending through the inflow end portion 110 and the outflow end portion 112.


The frame 102 can include a plurality of interconnected struts 116 arranged in a lattice-type pattern. The struts 116 can form a plurality of junctions 118 where the struts 116 intersect. The junctions 118 of the struts 116 disposed at the inflow and outflow end portions 110, 112 of the frame 102 can also be referred to as apices 119. The struts 116 are shown as positioned diagonally, or offset at an angle relative to, and radially offset from, the longitudinal axis of the prosthetic heart valve 100. In other embodiments and/or configurations, the struts 116 can be offset to a greater and/or lesser extent than depicted in FIG. 2, or some or all of the struts 116 can be positioned parallel to the longitudinal axis of the prosthetic heart valve 100 (see, e.g., FIG. 3).


In some embodiments, the struts 116 can be pivotably coupled to one another. In the illustrated embodiment, for example, the struts 116 form respective hinges at the junctions 118. In certain embodiments, fasteners (e.g., rivets or pins) 120 can be used to pivotably couple the struts 116 together. The hinges can allow the struts 116 to pivot relative to one another as the frame 102 is expanded or contracted, such as during assembly, preparation, and/or implantation of the prosthetic heart valve 100. For example, the frame 102 (and thus the prosthetic heart valve 100) can be manipulated into a radially-compressed or contracted configuration (e.g., FIG. 3) and inserted into a patient for implantation. Once inside the patient's body, the prosthetic heart valve 100 can be manipulated into an expanded state (e.g., FIGS. 1-2), as further described below.


The frame 102 can be formed using any suitable technique. Suitable techniques can include separately forming individual components (e.g., the struts 116 and fasteners 120) of the frame 102 and then mechanically assembling and connecting the individual components to form the frame 102. The struts 116 and fasteners 120 can be formed, for example, by laser cutting those components from sheets or tubes of metal, or by electroforming (electroplating or electrodeposition) or physical vapor deposition. In some embodiments, electroforming or physical vapor deposition can be used to form subcomponents of the frame 102 or the entire frame 102 with pivotable connections between the struts 116. In one embodiment, for example, electroforming or physical vapor deposition can be used to form struts 116 having integral fasteners 120. The individual struts 116 can be assembled together into a frame by inserting the integral fasteners 120 of each strut through a corresponding aperture of an adjacent strut. In some embodiments, electroforming or physical vapor deposition can be used to form the entire frame 102 in its final, cylindrical shape. In other embodiments, electroforming or physical vapor deposition can be used to form the entire frame in a flattened configuration, after which the ends of the flattened frame are connected to each other to form the final cylindrical shape of the frame.


In other embodiments, the struts 116 are not coupled to each other with respective hinges (e.g., fasteners) but are otherwise pivotable or bendable relative to each other to permit radial expansion and contraction of the frame. For example, the frame 102 can be formed (e.g., via laser cutting, electroforming or physical vapor deposition) from a single piece of material (e.g., a metal tube).


The frame 102 can be made of any of various suitable materials, such as stainless steel or a nickel titanium alloy (“NiTi”), for example, nitinol.


Additional details regarding the frame 102 can be found, for example, in U.S. Application No. 62/430,810, filed Dec. 6, 2016, and U.S. Patent Application Publication No. 2018/0153689, which are incorporated by reference herein.


Returning to FIG. 1, the valve structure 104 can regulate the flow of blood through the prosthetic heart valve 100. The valve structure 104 can comprise, for example, a leaflet assembly 122 comprising one or more leaflets made of a flexible material. The leaflets of the leaflet assembly 122 can be made from in whole or part, biological material (e.g., pericardial tissue, such as bovine, porcine, or equine pericardium), bio-compatible synthetic materials, and/or other such materials, including those described in U.S. Pat. No. 6,730,118, which is incorporated by reference herein. Further details regarding transcatheter prosthetic heart valves, including the manner in which the valve structure 104 can be coupled to the frame 102 of the prosthetic heart valve 100, can be found, for example, in U.S. Pat. Nos. 7,393,360, 7,510,575, 7,993,394, and 8,652,202, which are incorporated by reference herein.


As mentioned above, the skirt 106 can be mounted on the inside and/or outside of the frame 102. The skirt can be formed from natural tissue (e.g., pericardial tissue) or any of various biocompatible synthetic materials, including biocompatible fabrics (e.g., polyethylene terephthalate (“PET”) fabric). Additional details regarding the skirt 106, as well as the valve structure 104, can be found, for example, in U.S. Pat. No. 9,974,650, which is incorporated by reference herein.


The sealing member 108 can form a flexible structure that extends radially outwardly from the frame 102 of the prosthetic heart valve 100 when the prosthetic heart valve is in the radially-expanded configuration. As such, the sealing member 108 can, for example, conform to the anatomy of a native annulus and restrict or block blood flow around the prosthetic heart valve 100, thereby eliminating or reducing PVL.


The sealing member 108 can comprise a plurality of ribs 124 and a plurality of drapes 126, which can also be referred to as “connectors.” As shown in FIG. 2, the ribs 124 are coupled to and extend radially outwardly from the frame 102. As shown in FIG. 4, the drapes 126 are coupled to and extend radially between the frame 102 and the ribs 124. In this manner, the ribs 124 act as a support structure for the drapes 126, and the drapes 126 occlude gaps between the frame 102 and the ribs 124. In some embodiments, each drape 126 can have an inner longitudinally-extending edge 140 connected to the skirt 106 and an outer longitudinally-extending edge 142 connected to a rib 124.


The ribs 124 can be coupled to the frame 102 in various ways. For example, the ribs 124 and the frame 102 can be coupled by welding, fasteners (e.g., rivets, pins, screws), sutures, adhesive, and/or other suitable means for coupling.


Referring again to FIG. 2, the ribs 124 can have first end portions 128 (the lower end portions as illustrated in FIG. 2) and second end portions 130 (the upper end portions as illustrated in FIG. 2). In some embodiments, the first end portions 128 can be coupled to the inflow end portion 110 of the frame 102, and the second end portions 130 can be coupled to the intermediate portion 114 of the frame 102. In other embodiments, the first and/or second end portions 128, 130 can be coupled to various other portions (e.g., the outflow end portion 112) of the frame 102.


In certain embodiments, the first and second end portions 128, 130 of the ribs 124 can be coupled to respective junctions 118 of the frame 102. For example, in the illustrated embodiment, the first end portions 128 are coupled to a first circumferential row of junctions (i.e., counting from the inflow end portion 110), and the second end portions 130 are coupled to a fourth circumferential row of junctions. In other embodiments, the first and/or second end portions 128, 130 can be coupled to various other rows of junctions.


In particular embodiments, the first end portion 128 of each rib 124 can be circumferentially offset relative to the respective second end portion 130 such that the ribs 124 are angled relative to the longitudinal axis of the prosthetic heart valve 100 when the prosthetic heart valve 100 is in the radially-expanded configuration. In some embodiments, the first end portions 128 of adjacent ribs 124 can be coupled to the frame 102 at or near the same location on the frame, and the second end portions 130 of adjacent ribs 124 can be coupled to the frame 102 at or near the same location on the frame. As such, the ribs 124 can, for example, form in a zig-zag or undulating pattern when the prosthetic heart valve 100 is in the radially-expanded configuration (e.g., FIG. 1).


The first and second end portions 128, 130 of the ribs 124 can be coupled to the frame 102 at locations in which the relative distance between the locations changes as the prosthetic heart valve moves between the radially-expanded/axially-foreshortened configuration and the radially-compressed/axially-elongated configuration.


The ribs 124 can be sized and configured such that the length of the ribs 124 between their opposing ends is longer than the straight-line distance between the locations at which the first and second end portions 128, 130 are attached to the frame 102 when the prosthetic heart valve 100 is in the radially-expanded configuration (e.g., FIG. 1). Accordingly, the ribs 124 can flare radially outwardly from the frame 102 in the radially-expanded configuration.


The ribs 124 can also be sized and configured such that the length of the ribs 124 is equal or approximately equal to the distance between the locations at which the first and second end portions 128, 130 are attached to the frame 102 when the prosthetic heart valve 100 is in the radially-compressed configuration (e.g., FIG. 3). Thus, the ribs 124 can be radially disposed against the frame 102 in the radially-compressed configuration. As shown, in particular embodiments, the ribs 124 can be configured such that the ribs 124 have an “S” shape in the radially-compressed configuration.


The length of the ribs 124 and/or the location to which the ribs 124 are attached to the frame 102 can be sized and/or configured to adjust the extent to which the ribs 124 radially expand relative to the frame 102. For example, ribs having relatively longer length can expand farther radially outwardly than ribs having relatively shorter length (assuming they are attached to the frame at the same position relative to the longitudinal axis of the prosthetic heart valve 100).


In some embodiments, the ribs 124 can be sized and/or positioned relative to the frame 102 such that each of the ribs can radially expand equidistantly from the frame 102. This can be accomplished, for example, by forming each of the ribs 124 with the same length and coupling the ribs to the frame 102 at the same position relative to the longitudinal axis of the frame. It can also be accomplished, for example, by forming one or more of the ribs 124 with a different length than at least one other rib and coupling one or more of the ribs to the frame with different spacing between the first and second end portions 128, 130 than at least one other rib.


In other embodiments, one or more of the ribs 124 can be sized and/or positioned relative to the frame 102 such that one or more of the ribs can radially expand relatively more or less than at least one other rib. This can be accomplished, for example, by forming one or more of the ribs 124 with a different length than at least one other rib and coupling one or more of the ribs to the frame with different spacing between the first and second end portions 128, 130 than at least one other rib.


The ribs 124 can be formed from a resilient material such that the ribs 124 tend not to plastically deform when ribs compress and expand as the prosthetic heart valve 100 moves between the radially-expanded configuration and the radially-compressed configuration. This can be accomplished, for example, by forming the ribs from a relative flexible material such as nitinol, stainless steel, or a suitable biocompatible polymer.


Although the drapes 126 are shown in a mesh-like pattern for purposes of illustration, the drapes can comprise a tightly woven or sheet-like material. In some embodiments, the drapes 126 can comprise a flexible fabric or material configured to occlude or restrict blood flow, including PET, polytetrafluoroethylene (“PTFE”), expanded polytetrafluoroethylene (“ePTFE”), polyurethane, and/or polyester. In certain embodiments, the drapes 126 can be formed from the same material as the skirt 106 (e.g., PET). In other embodiments, the drapes 126 and the skirt 106 can be formed from different materials. For example, the drapes 126 can be formed from PTFE and the skirt 106 can be formed from polyester, or vice versa.


The drapes 126 can be coupled to the ribs 124 and/or the skirt 106 in various ways. For example, in some embodiments, each of the drapes 126 can be wrapped around a respective rib 124 and coupled to itself (e.g., with fasteners, sutures, adhesive, ultrasonic welding, and/or other suitable means for coupling). In other embodiments, the drapes 126 can be coupled to the ribs 124 without wrapping the drapes around the ribs. The drapes 126 can be coupled to the skirt 106, for example, with fasteners, sutures, adhesive, ultrasonic welding, and/or other suitable means for coupling. In one example, the edge 140 of each drape 126 can be sutures to the skirt 106 along the entire length of the edge 140, such as with a running stitch.


The drapes 126 can be sized and/or configured such that the drapes slacken and/or fold when the prosthetic heart valve 100 is compressed from the radially-expanded configuration to the radially-compressed configuration. This allows the ribs 124 to compress radially inwardly against the frame 102, and thus reduces the radial profile of the prosthetic heart valve in the radially-compressed configuration. The drapes 126 can also be sized and/or configured such that the drapes tighten and/or unfold when the prosthetic heart valve 100 is expanded from the radially-compressed configuration to the radially-expanded configuration.


Optionally, the sealing member 108 can further comprise a plurality of retaining members or cords 132. The cords 132 can be coupled to and extend from the frame 102 to the ribs 124. The cords 132 can, for example, be configured to retain the ribs 124 at a desired spacing and/or configuration relative to the frame 102.


The cords 132 can, for example, be coupled to the frame 102 and the ribs 124 at locations between the first and second end portions 128, 130 of the ribs. For example, in some embodiments, the cords 132 can be coupled to and extend from junctions 118 of the frame 102 that are disposed between the junctions to which the first and second end portions 128, 130 of the ribs 124 are attached.


In some embodiments, each rib 124 has two cords 132 coupled thereto. In other embodiments, each rib 124 can have more or less than two cords 132 coupled thereto. In some embodiments, there can be a single cord that is coupled to (e.g., wrapped around) all of the ribs 124 and to the frame 102.


The cords 132 can be formed from a relatively flexible, inelastic material such as nylon thread or stainless-steel wire. In this manner, the cords 132 can slacken and/or fold when the prosthetic heart valve 100 is crimped from the radially-expanded configuration to the radially-compressed configuration, and the cords can tighten and/or unfold when the prosthetic heart valve is expanded from the radially-compressed configuration to the radially-expanded configuration.


The length of the cords 132 can be sized and/or configured to control the extent to which the ribs 124 can radially expand relative to the frame 102. For example, cords 132 having relatively shorter length can retain the ribs 124 radially closer to the frame 102 than cords having relatively longer length. In some embodiments, the cords 132 can be sized and/or positioned relative to the ribs 124 such that each of the ribs can radially expand equidistantly from the frame 102. In other embodiments, one or more of the cords 132 can be sized and/or positioned relative to the ribs 124 such that the one or more of the ribs can expand relatively more or less than at least one other rib.


The length of the cords 132 can also be sized and/or configured to control the radially-expanded configuration (e.g., shape) of the ribs 124. For example, in one particular embodiment, two axially-spaced cords 132 extending in opposing circumferential directions can be coupled to each rib 124 between the first and second end portions 128, 130 of the rib 124. The cords 132 can each have a length that is less than the straight-line distance between the point on the frame 102 to which the cords 132 are attached and the rib 124 when the rib is in the radially-expanded configuration. As such, the cords 132 can cause the rib 124 to have an “S” shape when the rib is in the radially-expanded configuration.


The location at which each of the cords 132 is attached to the ribs 124 can be configured to adjust the shape (e.g., arc) of the ribs 124. In some embodiments, the location at which each of the cords 132 is attached to the ribs 124 can be configured such that the shape of each of the ribs is the same when the prosthetic heart valve 100 is in the radially-expanded configuration. In other embodiments, the location at which one or more of the cords 132 is attached to the ribs 124 can be configured such that the shape of the one or more ribs is different than at least one other rib when the prosthetic heart valve 100 is in the radially-expanded configuration.


In lieu of or in addition to the cords 132, the ribs 124 can be shape-set in the desired configuration. In such embodiments, the ribs 124 can be formed from a shape-memory material such as nitinol.


The prosthetic heart valve 100 can be releasably coupled to a delivery apparatus and crimped to the radially-compressed configuration. Although not shown, the prosthetic heart valve 100 can include an actuation mechanism that is coupled to the frame 102 of the prosthetic heart valve 100 and that, in cooperation with the delivery apparatus, is configured to incrementally move the prosthetic heart valve between the radially-compressed and radially-expanded configurations. Additional details regarding the actuation mechanism and the delivery apparatus can be found, for example, in U.S. Application No. 62/430,810 and U.S. Patent Application Publication No. 2018/0153689.


In the radially-compressed configuration, the prosthetic heart valve 100 can be advanced percutaneously to a patient's heart and positioned in the annulus of a native valve. The prosthetic heart valve 100 can be expanded from the radially-compressed configuration to the radially-expanded configuration.


In the radially-expanded configuration, the sealing member 108 can engage the tissue of the native annulus adjacent the prosthetic heart valve 100 and fill in any gaps that may exist between the frame 102 of the prosthetic heart valve 100 and the native annulus. In this manner, the sealing member 108 can, for example, reduce and/or prevent blood from flowing around the prosthetic heart valve 100 between frame 102 and the native annulus.


For example, FIG. 5 shows the prosthetic heart valve 100 in the radially-expanded configuration and disposed within a native aortic valve 200 of a heart 202 (shown in partial cross section). As shown, the sealing member 108 can engage the tissue of the native annulus and/or leaflets adjacent the prosthetic heart valve 100 and occlude any gaps that may exist therebetween. Accordingly, the sealing member reduces and/or prevents blood from flowing around the prosthetic heart valve 100 between the left ventricle 204 and the aorta 206.


The prosthetic heart valve 100 can be secured within the native annulus and released from the delivery apparatus. After the prosthetic heart valve 100 is released, the sealing member 108 can continue to reduce and/or prevent PVL.



FIG. 6 shows an exemplary embodiment of a sealing member 300 coupled to the prosthetic heart valve 100 in lieu of the sealing member 108. The sealing member 300 can comprise a plurality of ribs 302 and a plurality of first drapes 304. The sealing member 300 can also optionally comprise a plurality of cords 306 and/or a plurality of second drapes 308.


The ribs 302, the first drapes 304, and the cords 306 can, for example, be configured similar to the ribs 124, the drapes 126, and the cords 132 of the prosthetic heart valve 100, respectively.


The second drapes 308 can be coupled to and extend circumferentially between adjacent pairs of the ribs 302. The second drapes 308 can also be coupled to extend radially outwardly from the skirt 106. In this manner, the second drapes 308 can, for example, provide an additional and/or alternative means for reducing and/or eliminating PVL than the first drapes 304.


In embodiments in which the sealing member 300 includes the cords 306, the second drapes 308 can extend in a plane defined by the cords 306. In other such embodiments or embodiment in which the sealing member 300 does not include the cords 306, the second drapes 308 can extend in various other planes.


In particular embodiments, the second drapes 308 can extend from the skirt 106 in planes that are at least approximately parallel to a plane perpendicular to the longitudinal axis of the prosthetic heart valve 100. In other embodiments, the second drapes 308 can extend from the skirt 106 in planes that are at angled relative to a plane perpendicular to the longitudinal axis of the prosthetic heart valve 100. For example, is some embodiments, the second drapes 308 can define a plane that is angled approximately 10-80 degrees relative to a plane perpendicular to the longitudinal axis of the prosthetic heart valve 100. In particular embodiments, the second drapes 308 can define a plane that is angled approximately 25-65 degrees or approximately 45 degrees relative to a plane perpendicular to the longitudinal axis of the prosthetic heart valve 100.


The second drapes 308 can be coupled to the ribs 302 and/or the skirt 106 in various ways. For example, the drapes 126 can be coupled to the ribs 302 and the skirt 106 with fasteners, sutures, adhesive, ultrasonic welding, and/or other suitable means for coupling.


The second drapes 308 can comprise a flexible fabric or material configured to occlude or restrict blood flow, including PET, PTFE, ePTFE, polyurethane, and/or polyester. In some embodiments, the second drapes 308 can be formed from the same material as the first drapes 304 and/or the skirt 106 (e.g., PET). In other embodiments, at least one of the first drapes 304, the second drapes 308, and the skirt 106 can be formed from different materials. For example, the second drapes 308 can be formed from PTFE and the skirt 106 can be formed from polyester, or vice versa.



FIG. 7 shows an exemplary prosthetic heart valve 400. The prosthetic heart valve 400 can comprise a frame 402, a valve structure 404, a skirt 406, and a sealing member 408. The prosthetic heart valve 400 can be figured similar to the prosthetic heart valve 100, except the frame 402 of the prosthetic heart valve 400 is self-expandable and/or balloon-expandable rather than mechanically-expandable like the frame 102 of the prosthetic heart valve 100. Additional details regarding the frame 402, the valve structure 404, and the skirt 406 can be found, for example, in U.S. Pat. No. 9,974,650.


In some embodiments, the sealing member 408 can be configured similar to the sealing member 108 of the prosthetic heart valve 100. The sealing member 408 can comprise ribs 410 coupled to the frame 402 and drapes 412 extending radially outwardly between skirt 406 and the ribs 410.


In certain embodiments, the sealing member 408 can comprise cords that are coupled to and extend between the ribs 410 and the frame 402. For example, the cords can be configured similar to the cords 306 of the sealing member 300.


In particular embodiments, the drapes 412 of the sealing member 408 can be first drapes, and the sealing member can further comprise second drapes. For example, the first and second drapes of the sealing member 408 can be configured similar to the first and second drapes 304, 308 of the sealing member 300, respectively.


The features described herein regarding any example can be combined with other features described in any one or more of the other examples, unless otherwise stated. For example, the features of the sealing member 108 can be combined with the sealing member 300 and/or the sealing member 408, or vice versa. Additionally, any feature of an embodiment is independent from other components of the embodiment, unless otherwise stated.


In view of the many possible embodiments to which the principles of the disclosure may be applied, it should be recognized that the illustrated embodiments are only examples and should not be taken as limiting the scope of the claimed subject matter. Rather, the scope of the claimed subject matter is defined by the following claims and their equivalents.

Claims
  • 1. A prosthetic heart valve, comprising: a frame having an inflow end portion, an outflow end portion, an intermediate portion disposed between the inflow and outflow end portions, and a plurality of struts, wherein the frame is radially compressible and expandable between a radially-compressed configuration and a radially-expanded configuration;a valve component disposed within and coupled to the frame and having a plurality of leaflets; anda sealing member having a plurality of ribs and a plurality of drapes, wherein the ribs are coupled to and extend radially outwardly from the frame when the frame is in the radially-expanded configuration, wherein the drapes are coupled to and extend radially between the frame and the ribs, and wherein the sealing member is configured to reduce or prevent perivalvular leakage around the prosthetic heart valve.
  • 2. The prosthetic heart valve of claim 1, wherein each of the ribs includes a first end portion connected to the inflow end portion of the frame and a second end portion connected to the intermediate portion of the frame.
  • 3. The prosthetic heart valve of claim 2, wherein the struts of the frame form rows of junctions where the struts are connected to each other, and wherein the first end portions of the ribs are connected to one row of junctions, and the second end portions of the ribs are connected to another row of junctions spaced from the one row of junctions.
  • 4. The prosthetic heart valve of claim 2, wherein the first end portion of each rib is circumferentially offset relative to the second end portion of the rib when the prosthetic heart valve is in the radially-expanded configuration.
  • 5. The prosthetic heart valve of claim 2, wherein the first end portions of adjacent ribs are coupled to a first apex of the frame, and the second end portions of the adjacent ribs are coupled to a second apex of the frame.
  • 6. The prosthetic heart valve of claim 1, wherein the ribs of the sealing member are coupled together in a zig-zag or undulating pattern extending circumferentially around the frame.
  • 7. The prosthetic heart valve of claim 1, further comprising a plurality of flexible cords connected to and extending between the frame and the ribs of the sealing member.
  • 8. The prosthetic heart valve of claim 7, wherein the cords are connected to the ribs at intermediate portions of the ribs disposed between the first and second end portions of the ribs.
  • 9. The prosthetic heart valve of claim 1, further comprising a skirt mounted on the frame, and wherein the drapes have inner longitudinally-extending edges sutured to the skirt and outer longitudinally-extending edges secured to the ribs.
  • 10. The prosthetic heart valve of claim 1, wherein the drapes of the sealing member are first drapes, wherein the sealing member further comprises a plurality of second drapes that are coupled to the frame and the ribs and that are circumferentially disposed between adjacent ribs and the first drapes.
  • 11. The prosthetic heart valve of claim 1, wherein the ribs and the drapes extend longitudinally along the frame.
  • 12. The prosthetic heart valve of claim 1, wherein the drapes comprise PET, PTFE, ePTFE, polyurethane, or polyester.
  • 13. The prosthetic heart valve of claim 1, wherein the frame is at least partially self-expandable from the radially-compressed configuration to the radially-expanded configuration.
  • 14. The prosthetic heart valve of claim 1, wherein the frame is at least partially mechanically expandable from the radially-compressed configuration to the radially-expanded configuration.
  • 15. A prosthetic heart valve, comprising: a frame having an inflow end portion, an outflow end portion, an intermediate portion disposed between the inflow and outflow end portions, and a plurality of struts, wherein the frame is radially collapsible and expandable between a radially-compressed configuration and a radially-expanded configuration;a valve component disposed within and coupled to the frame and having a plurality of leaflets; anda sealing member having a plurality of ribs, a plurality of first drapes, and a plurality of second drapes, wherein the ribs are coupled to and extend radially outwardly from the frame when the frame is in the radially-expanded configuration, wherein the first drapes are coupled to the frame and the ribs, are circumferentially aligned with the ribs, and radially extend between the frame and the ribs, and wherein the second drapes are coupled to the frame, the ribs, and the first drapes.
  • 16. The prosthetic heart valve of claim 15, wherein each of the first drapes is connected to a respective rib, and wherein each of the second drapes extends circumferentially between adjacent ribs.
  • 17. The prosthetic heart valve of claim 15, wherein the ribs and the first drapes extend longitudinally along the frame.
  • 18. The prosthetic heart valve of claim 15, wherein the first drapes extend from the frame in a first plane, and wherein the second drapes extend from the frame in a second plane that is at least substantially perpendicular to the first plane.
  • 19. The prosthetic heart valve of claim 15, further comprising a plurality of flexible cords that are coupled to and extend between the frame and the ribs, and wherein the second drapes are mounted to the cords.
  • 20. A prosthetic heart valve, comprising: a frame having an inflow end portion, an outflow end portion, an intermediate portion disposed between the inflow and outflow end portions, and a plurality of struts, wherein the frame is radially compressible and expandable between a radially-compressed configuration and a radially-expanded configuration;a valve component disposed within and coupled to the frame and having a plurality of leaflets; anda sealing member having a plurality of ribs, a plurality of drapes, and one or more cords, wherein the ribs are coupled to and extend radially outwardly from the frame when the frame is in the radially-expanded configuration, wherein the drapes are coupled to and extend radially between the frame and the ribs, wherein the cords are coupled to the frame and the ribs so as to limit radial expansion of the ribs relative to the frame, and wherein the sealing member is configured to reduce or prevent perivalvular leakage around the prosthetic heart valve.
CROSS-REFERENCE TO RELATED APPLICATION

This application claims the benefit of U.S. Application No. 62/554,933, filed Sep. 6, 2017, which application is incorporated by reference herein.

US Referenced Citations (293)
Number Name Date Kind
3409013 Berry Nov 1968 A
3548417 Kisher Dec 1970 A
3587115 Shiley Jun 1971 A
3657744 Ersek Apr 1972 A
3671979 Moulopoulos Jun 1972 A
3714671 Edwards et al. Feb 1973 A
3755823 Hancock Sep 1973 A
4035849 Angell et al. Jul 1977 A
4056854 Boretos et al. Nov 1977 A
4106129 Carpentier et al. Aug 1978 A
4222126 Boretos et al. Sep 1980 A
4265694 Boretos et al. May 1981 A
4297749 Davis et al. Nov 1981 A
RE30912 Hancock Apr 1982 E
4339831 Johnson Jul 1982 A
4343048 Ross et al. Aug 1982 A
4345340 Rosen Aug 1982 A
4373216 Klawitter Feb 1983 A
4406022 Roy Sep 1983 A
4441216 Ionescu et al. Apr 1984 A
4470157 Love Sep 1984 A
4535483 Klawitter et al. Aug 1985 A
4574803 Storz Mar 1986 A
4592340 Boyles Jun 1986 A
4605407 Black et al. Aug 1986 A
4612011 Kautzky Sep 1986 A
4643732 Pietsch et al. Feb 1987 A
4655771 Wallsten Apr 1987 A
4692164 Dzemeshkevich et al. Sep 1987 A
4733665 Palmaz Mar 1988 A
4759758 Gabbay Jul 1988 A
4762128 Rosenbluth Aug 1988 A
4777951 Cribier et al. Oct 1988 A
4787899 Lazarus Nov 1988 A
4787901 Baykut Nov 1988 A
4796629 Grayzel Jan 1989 A
4820299 Philippe et al. Apr 1989 A
4829990 Thuroff et al. May 1989 A
4851001 Taheri Jul 1989 A
4856516 Hillstead Aug 1989 A
4878495 Grayzel Nov 1989 A
4878906 Lindemann et al. Nov 1989 A
4883458 Shiber Nov 1989 A
4922905 Strecker May 1990 A
4966604 Reiss Oct 1990 A
4979939 Shiber Dec 1990 A
4986830 Owens et al. Jan 1991 A
4994077 Dobben Feb 1991 A
5007896 Shiber Apr 1991 A
5026366 Leckrone Jun 1991 A
5032128 Alonso Jul 1991 A
5037434 Lane Aug 1991 A
5047041 Samuels Sep 1991 A
5059177 Towne et al. Oct 1991 A
5080668 Bolz et al. Jan 1992 A
5085635 Cragg Feb 1992 A
5089015 Ross Feb 1992 A
5152771 Sabbaghian et al. Oct 1992 A
5163953 Vince Nov 1992 A
5167628 Boyles Dec 1992 A
5192297 Hull Mar 1993 A
5266073 Wall Nov 1993 A
5282847 Trescony et al. Feb 1994 A
5295958 Shturman Mar 1994 A
5332402 Teitelbaum Jul 1994 A
5360444 Kusuhara Nov 1994 A
5370685 Stevens Dec 1994 A
5397351 Pavcnik et al. Mar 1995 A
5411055 Kane May 1995 A
5411552 Andersen et al. May 1995 A
5443446 Shturman Aug 1995 A
5480424 Cox Jan 1996 A
5500014 Quijano et al. Mar 1996 A
5545209 Roberts et al. Aug 1996 A
5545214 Stevens Aug 1996 A
5549665 Vesely et al. Aug 1996 A
5554185 Block et al. Sep 1996 A
5558644 Boyd et al. Sep 1996 A
5571175 Vanney et al. Nov 1996 A
5584803 Stevens et al. Dec 1996 A
5591185 Kilmer et al. Jan 1997 A
5591195 Taheri et al. Jan 1997 A
5607464 Trescony et al. Mar 1997 A
5609626 Quijano et al. Mar 1997 A
5628792 Lentell May 1997 A
5639274 Fischell et al. Jun 1997 A
5665115 Cragg Sep 1997 A
5716417 Girard et al. Feb 1998 A
5728068 Leone et al. Mar 1998 A
5749890 Shaknovich May 1998 A
5756476 Epstein et al. May 1998 A
5769812 Stevens et al. Jun 1998 A
5800508 Goicoechea et al. Sep 1998 A
5840081 Andersen et al. Nov 1998 A
5855597 Jayaraman Jan 1999 A
5855601 Bessler et al. Jan 1999 A
5855602 Angell Jan 1999 A
5925063 Khosravi Jul 1999 A
5957949 Leonhardt et al. Sep 1999 A
6027525 Suh et al. Feb 2000 A
6132473 Williams et al. Oct 2000 A
6168614 Andersen et al. Jan 2001 B1
6171335 Wheatley et al. Jan 2001 B1
6174327 Mertens et al. Jan 2001 B1
6210408 Chandrasekaran et al. Apr 2001 B1
6217585 Houser et al. Apr 2001 B1
6221091 Khosravi Apr 2001 B1
6231602 Carpentier et al. May 2001 B1
6245102 Jayaraman Jun 2001 B1
6299637 Shaolian et al. Oct 2001 B1
6302906 Goicoechea et al. Oct 2001 B1
6338740 Carpentier Jan 2002 B1
6350277 Kocur Feb 2002 B1
6352547 Brown et al. Mar 2002 B1
6425916 Garrison et al. Jul 2002 B1
6440764 Focht et al. Aug 2002 B1
6454799 Schreck Sep 2002 B1
6458153 Bailey et al. Oct 2002 B1
6461382 Cao Oct 2002 B1
6468660 Ogle et al. Oct 2002 B2
6482228 Norred Nov 2002 B1
6488704 Connelly et al. Dec 2002 B1
6527979 Constantz et al. Mar 2003 B2
6569196 Vesely May 2003 B1
6582462 Andersen et al. Jun 2003 B1
6605112 Moll et al. Aug 2003 B1
6652578 Bailey et al. Nov 2003 B2
6689123 Pinchasik Feb 2004 B2
6716244 Klaco Apr 2004 B2
6730118 Spenser et al. May 2004 B2
6733525 Yang et al. May 2004 B2
6767362 Schreck Jul 2004 B2
6769161 Brown et al. Aug 2004 B2
6783542 Eidenschink Aug 2004 B2
6830584 Seguin Dec 2004 B1
6878162 Bales et al. Apr 2005 B2
6893460 Spenser et al. May 2005 B2
6908481 Cribier Jun 2005 B2
6936067 Buchanan Aug 2005 B2
7018406 Seguin et al. Mar 2006 B2
7018408 Bailey et al. Mar 2006 B2
7096554 Austin et al. Aug 2006 B2
7225518 Eidenschink et al. Jun 2007 B2
7276078 Spenser et al. Oct 2007 B2
7276084 Yang et al. Oct 2007 B2
7316710 Cheng et al. Jan 2008 B1
7318278 Zhang et al. Jan 2008 B2
7374571 Pease et al. May 2008 B2
7393360 Spenser et al. Jul 2008 B2
7462191 Spenser et al. Dec 2008 B2
7510575 Spenser et al. Mar 2009 B2
7563280 Anderson et al. Jul 2009 B2
7585321 Cribier Sep 2009 B2
7618446 Andersen et al. Nov 2009 B2
7618447 Case et al. Nov 2009 B2
7655034 Mitchell et al. Feb 2010 B2
7785366 Maurer et al. Aug 2010 B2
7959665 Pienknagura Jun 2011 B2
7959672 Salahieh et al. Jun 2011 B2
7993394 Hariton et al. Aug 2011 B2
8029556 Rowe Oct 2011 B2
8075611 Millwee et al. Dec 2011 B2
8128686 Paul, Jr. et al. Mar 2012 B2
8167932 Bourang et al. May 2012 B2
8291570 Eidenschink et al. Oct 2012 B2
8348998 Pintor et al. Jan 2013 B2
8449606 Eliasen et al. May 2013 B2
8454685 Hariton et al. Jun 2013 B2
8652203 Quadri et al. Feb 2014 B2
8747463 Fogarty et al. Jun 2014 B2
9078781 Ryan et al. Jul 2015 B2
20010021872 Bailey et al. Sep 2001 A1
20020026094 Roth Feb 2002 A1
20020032481 Gabbay Mar 2002 A1
20020138135 Duerig et al. Sep 2002 A1
20020143390 Ishii Oct 2002 A1
20020173842 Buchanan Nov 2002 A1
20030014105 Cao Jan 2003 A1
20030050694 Yang et al. Mar 2003 A1
20030100939 Yodfat et al. May 2003 A1
20030158597 Quiachon et al. Aug 2003 A1
20030212454 Scott et al. Nov 2003 A1
20040024452 Kruse et al. Feb 2004 A1
20040039436 Spenser et al. Feb 2004 A1
20040078074 Anderson et al. Apr 2004 A1
20040186558 Pavcnik et al. Sep 2004 A1
20040186563 Lobbi Sep 2004 A1
20040186565 Schreck Sep 2004 A1
20040260389 Case et al. Dec 2004 A1
20050010285 Lambrecht et al. Jan 2005 A1
20050075725 Rowe Apr 2005 A1
20050075728 Nguyen et al. Apr 2005 A1
20050096736 Osse et al. May 2005 A1
20050096738 Cali et al. May 2005 A1
20050188525 Weber et al. Sep 2005 A1
20050203614 Forster et al. Sep 2005 A1
20050203617 Forster et al. Sep 2005 A1
20050234546 Nugent et al. Oct 2005 A1
20060004469 Sokel Jan 2006 A1
20060025857 Bergheim et al. Feb 2006 A1
20060058872 Salahieh et al. Mar 2006 A1
20060074484 Huber Apr 2006 A1
20060108090 Ederer et al. May 2006 A1
20060149350 Patel et al. Jul 2006 A1
20060183383 Asmus et al. Aug 2006 A1
20060229719 Marquez et al. Oct 2006 A1
20060259136 Nguyen et al. Nov 2006 A1
20060259137 Artof et al. Nov 2006 A1
20060287717 Rowe et al. Dec 2006 A1
20070005131 Taylor Jan 2007 A1
20070010876 Salahieh et al. Jan 2007 A1
20070010877 Salahieh et al. Jan 2007 A1
20070112422 Dehdashtian May 2007 A1
20070162102 Ryan et al. Jul 2007 A1
20070203503 Salahieh et al. Aug 2007 A1
20070203575 Forster et al. Aug 2007 A1
20070203576 Lee et al. Aug 2007 A1
20070208550 Cao et al. Sep 2007 A1
20070213813 Von Segesser et al. Sep 2007 A1
20070233228 Eberhardt et al. Oct 2007 A1
20070260305 Drews et al. Nov 2007 A1
20070265700 Eliasen et al. Nov 2007 A1
20080021546 Patz et al. Jan 2008 A1
20080114442 Mitchell et al. May 2008 A1
20080125853 Bailey et al. May 2008 A1
20080154355 Benichou et al. Jun 2008 A1
20080183271 Frawley et al. Jul 2008 A1
20080208327 Rowe Aug 2008 A1
20080243245 Thambar et al. Oct 2008 A1
20080255660 Guyenot et al. Oct 2008 A1
20080275537 Limon Nov 2008 A1
20080294248 Yang et al. Nov 2008 A1
20090099653 Suri et al. Apr 2009 A1
20090118826 Khaghani May 2009 A1
20090125118 Gong May 2009 A1
20090157175 Benichou Jun 2009 A1
20090276040 Rowe et al. Nov 2009 A1
20090281619 Le et al. Nov 2009 A1
20090287296 Manasse Nov 2009 A1
20090287299 Tabor et al. Nov 2009 A1
20090299452 Eidenschink et al. Dec 2009 A1
20090319037 Rowe et al. Dec 2009 A1
20100049313 Alon et al. Feb 2010 A1
20100082094 Quadri et al. Apr 2010 A1
20100168844 Toomes et al. Jul 2010 A1
20100185277 Braido et al. Jul 2010 A1
20100198347 Zakay et al. Aug 2010 A1
20100204781 Alkhatib Aug 2010 A1
20110015729 Jimenez et al. Jan 2011 A1
20110022157 Essinger et al. Jan 2011 A1
20110066224 White Mar 2011 A1
20110137397 Chau et al. Jun 2011 A1
20110218619 Benichou et al. Sep 2011 A1
20110319991 Hariton et al. Dec 2011 A1
20120089223 Nguyen et al. Apr 2012 A1
20120101571 Thambar et al. Apr 2012 A1
20120123529 Levi et al. May 2012 A1
20120259409 Nguyen et al. Oct 2012 A1
20130023985 Khairkhahan et al. Jan 2013 A1
20130046373 Cartledge et al. Feb 2013 A1
20130150956 Yohanan et al. Jun 2013 A1
20130166017 Cartledge et al. Jun 2013 A1
20130190857 Mitra et al. Jul 2013 A1
20130274873 Delaloye et al. Oct 2013 A1
20130304200 McLean et al. Nov 2013 A1
20130310926 Hariton Nov 2013 A1
20130317598 Rowe et al. Nov 2013 A1
20130331929 Mitra et al. Dec 2013 A1
20140194981 Menk et al. Jul 2014 A1
20140200661 Pintor et al. Jul 2014 A1
20140209238 Bonyuet et al. Jul 2014 A1
20140222136 Geist et al. Aug 2014 A1
20140236287 Clague et al. Aug 2014 A1
20140277417 Schraut et al. Sep 2014 A1
20140277419 Garde et al. Sep 2014 A1
20140277424 Oslund Sep 2014 A1
20140277563 White Sep 2014 A1
20140296962 Cartledge et al. Oct 2014 A1
20140330372 Weston et al. Nov 2014 A1
20140343670 Bakis et al. Nov 2014 A1
20140343671 Yohanan et al. Nov 2014 A1
20140350667 Braido et al. Nov 2014 A1
20150073545 Braido Mar 2015 A1
20150073546 Braido Mar 2015 A1
20150135506 White May 2015 A1
20150157455 Hoang et al. Jun 2015 A1
20160361160 Braido et al. Dec 2016 A1
20170014229 Nguyen-Thien-Nhon et al. Jan 2017 A1
20170143485 Gorman, III et al. May 2017 A1
20180028310 Gurovich et al. Feb 2018 A1
20180153689 Maimon et al. Jun 2018 A1
20180325665 Gurovich et al. Nov 2018 A1
20180344456 Barash et al. Dec 2018 A1
Foreign Referenced Citations (74)
Number Date Country
103705315 Oct 2015 CN
2246526 Mar 1973 DE
0144167 Jun 1985 DE
19532846 Mar 1997 DE
19546692 Jun 1997 DE
19857887 Jul 2000 DE
19907646 Aug 2000 DE
10049812 Apr 2002 DE
10049813 Apr 2002 DE
10049814 Apr 2002 DE
10049815 Apr 2002 DE
0103546 Mar 1984 EP
0850607 Jul 1998 EP
1057460 Dec 2000 EP
1088529 Apr 2001 EP
1570809 Sep 2005 EP
2788217 Jul 2000 FR
2815844 May 2002 FR
2056023 Mar 1981 GB
1271508 Nov 1986 SU
9117720 Nov 1991 WO
9217118 Oct 1992 WO
9301768 Feb 1993 WO
9724080 Jul 1997 WO
9829057 Jul 1998 WO
9930646 Jun 1999 WO
9933414 Jul 1999 WO
0018333 Apr 2000 WO
0041652 Jul 2000 WO
0135878 May 2001 WO
0149213 Jul 2001 WO
0154624 Aug 2001 WO
0154625 Aug 2001 WO
0162189 Aug 2001 WO
0047139 Sep 2001 WO
0164137 Sep 2001 WO
0176510 Oct 2001 WO
0222054 Mar 2002 WO
0236048 May 2002 WO
0241789 May 2002 WO
0243620 Jun 2002 WO
0247575 Jun 2002 WO
0249540 Jun 2002 WO
03047468 Jun 2003 WO
2005034812 Apr 2005 WO
2005055883 Jun 2005 WO
2005084595 Sep 2005 WO
2006005015 Jan 2006 WO
2006014233 Feb 2006 WO
2006032051 Mar 2006 WO
2006034008 Mar 2006 WO
2006111391 Oct 2006 WO
2006127089 Nov 2006 WO
2006138173 Dec 2006 WO
2005102015 Apr 2007 WO
2007047488 Apr 2007 WO
2007067942 Jun 2007 WO
2007097983 Aug 2007 WO
2008005405 Jan 2008 WO
2008015257 Feb 2008 WO
2008035337 Mar 2008 WO
2008091515 Jul 2008 WO
2008147964 Dec 2008 WO
2008150529 Dec 2008 WO
2009033469 Mar 2009 WO
2009042196 Apr 2009 WO
2009053497 Apr 2009 WO
2009061389 May 2009 WO
2009116041 Sep 2009 WO
2009149462 Dec 2009 WO
2010011699 Jan 2010 WO
2010121076 Oct 2010 WO
2013106585 Jul 2013 WO
2015085218 Jun 2015 WO
Non-Patent Literature Citations (9)
Entry
H.R. Andersen, et al. “Transluminal Implantation of Artificial Heart Valve. Description of a New Expandable Aortic Valve and Initial Results with implantation by Catheter Technique in Closed Chest Pig,” European Heart Journal, No. 13. pp. 704-708. 1992.
H.R. Andersen “History of Percutaneous Aortic Valve Prosthesis,” Herz No. 34. pp. 343-346. 2009.
Pavcnik, et al. “Development and initial Experimental Evaluation of a Prosthetic Aortic Valve for Transcatheter Placement,” Cardiovascular Radiology, vol. 183, No. 1. pp. 151-154. 1992.
Bailey, S. “Percutaneous Expandable Prosthetic Valves,” Textbook of Interventional Cardiology vol. 2, 2nd Ed. pp. 1268-1276. 1994.
Al-Khaja, et al. “Eleven Years' Experience with Carpentier-Edwards Biological Valves in Relation to Survival and Complications,” European Journal of Cardiothoracic Surgery, vol. 3. pp. 305-311. 1989.
Ross, “Aortic Valve Surgery,” At a meeting of the Council on Aug. 4, 1966. pp. 192-197.
Sabbah, et al. “Mechanical Factors in the Degeneration of Porcine Bioprosthetic Valves: an Overview,” Journal of Cardiac Surgery, vol. 4, No. 4. pp. 302-309. 1989.
Wheatley, “Valve Prostheses,” Operative Surgery, 4th ed. pp. 415-424. 1986.
Uchida, “Modifications of Gianturco Expandable Wire Stents,” American Journal of Roentgenology, vol. 150. pp. 1185-1187. 1986.
Related Publications (1)
Number Date Country
20190069995 A1 Mar 2019 US
Provisional Applications (1)
Number Date Country
62554933 Sep 2017 US