Sealing member for prosthetic heart valve

Information

  • Patent Grant
  • 12053370
  • Patent Number
    12,053,370
  • Date Filed
    Friday, January 22, 2021
    3 years ago
  • Date Issued
    Tuesday, August 6, 2024
    4 months ago
Abstract
An implantable prosthetic valve can include a radially expandable and collapsible annular frame having an inflow end and an outflow end. A leaflet structure can be positioned within the frame. An annular inner skirt can be positioned around an inner surface of the frame, wherein the inner skirt includes an outflow edge portion secured to the frame and an inflow edge portion secured to the frame. An outer skirt can be positioned around the outer surface of the frame, wherein the outer skirt comprises an outflow edge portion secured to the frame and an inflow edge portion that is secured to the inflow edge portion of the inner skirt, wherein the inner and outer skirts are configured such that when the prosthetic valve is implanted, antegrade blood can flow through a space between the inflow edge portion of the inner skirt and the inflow edge portion of the outer skirt.
Description
FIELD

The present disclosure relates to implantable, expandable prosthetic devices and to methods and apparatuses for such prosthetic devices.


BACKGROUND

The human heart can suffer from various valvular diseases. These valvular diseases can result in significant malfunctioning of the heart and ultimately require replacement of the native valve with an artificial valve. There are a number of known artificial valves and a number of known methods of implanting these artificial valves in humans. Because of the drawbacks associated with conventional open-heart surgery, percutaneous and minimally-invasive surgical approaches are garnering intense attention. In one technique, a prosthetic valve is configured to be implanted in a much less invasive procedure by way of catheterization. For example, collapsible transcatheter prosthetic heart valves can be crimped to a compressed state and percutaneously introduced in the compressed state on a catheter and expanded to a functional size at the desired position by balloon inflation or by utilization of a self-expanding frame or stent.


A prosthetic valve for use in such a procedure can include a radially collapsible and expandable frame to which leaflets of the prosthetic valve can be coupled. For example, U.S. Pat. Nos. 6,730,118, 7,393,360, 7,510,575, and 7,993,394, which are incorporated herein by reference, describe exemplary collapsible and expandable transcatheter prosthetic heart valves.


A prosthetic valve for use in such a procedure can include a radially collapsible and expandable frame to which leaflets of the prosthetic valve can be coupled, and which can be percutaneously introduced in a collapsed configuration on a catheter and expanded in the desired position by balloon inflation or by utilization of a self-expanding frame or stent. A challenge in catheter-implanted prosthetic valves is control of perivalvular leakage around the valve, which can occur for a period of time following initial implantation. An additional challenge includes the process of crimping such a prosthetic valve to a profile suitable for percutaneous delivery to a subject.


SUMMARY

Embodiments of a radially collapsible and expandable prosthetic valve are disclosed herein that include an improved outer skirt for reducing perivalvular leakage, as well as related methods and apparatuses including such prosthetic valves. In several embodiments, the disclosed prosthetic valves are configured as replacement heart valves for implantation into a subject.


In one representative embodiment, an implantable prosthetic heart valve can comprise an annular frame comprising an inflow end and an outflow end and being radially collapsible and expandable between a radially collapsed configuration and a radially expanded configuration, and a leaflet structure positioned within the frame and secured thereto. The prosthetic heart valve can further comprise an annular inner skirt positioned around an inner surface of the frame, wherein the inner skirt comprises an outflow edge portion secured to the frame and an inflow edge portion secured to the frame. In some embodiments, the inflow edge portion wraps around the inflow end of the frame and extends at least partially along an outer surface of the frame. The prosthetic heart valve can also have an outer skirt positioned around the outer surface of the frame, wherein the outer skirt comprises an outflow edge portion secured to the frame and an inwardly folded inflow edge portion that is secured to the inflow edge portion of the inner skirt.


In some embodiments, the inflow edge portion of the inner skirt can be secured to the frame at discrete, spaced-apart locations. In such embodiments, the inflow edge portion of the outer skirt can be secured to the inflow edge portion of the inner skirt only at locations on the inflow edge portion of the inner skirt that are secured to the frame.


In some embodiments, the frame can further comprise a plurality of struts forming a plurality of circumferentially spaced apices at the inflow end of the frame, and the inflow edge portion of the inner skirt can be secured to the frame only at the apices.


In some embodiments, the inflow edge portion of the outer skirt can be secured to the inflow edge portion of the inner skirt only at locations on the inflow edge portion of the inner skirt that are secured to the apices of the frame. In some embodiments, the inflow edge portion of the inner skirt can be secured to the frame with discrete, spaced-apart sutures.


In some embodiments, the outflow edge portion of the outer skirt can comprise a plurality of alternating projections and notches, and the projections can be secured to the frame and the notches can be not directly secured to the frame.


In some embodiments, the outer skirt can further comprise an intermediate portion between the inflow edge portion and the outflow edge portion and the intermediate portion can comprise a plurality of openings. In such embodiments, the openings can be aligned with the projections.


In some embodiments, the inflow edge portion of the outer skirt can comprise a plurality of overlapping portions that are angularly aligned with the openings, wherein the overlapping portions are folded inwardly towards the outflow end of the frame, and wherein the overlapping portions are secured to the inflow edge portion of the inner skirt. In such embodiments, the overlapping portions can be secured to the inflow edge portion of the inner skirt only at locations on the inflow edge portion of the inner skirt that are secured to the frame. In such embodiments, the overlapping portions can be folded such that each of the overlapping portions is radially aligned with a corresponding one of the openings when the overlapping portions are secured to the inner skirt.


In some embodiments, the outer skirt can be secured to the inner skirt by sutures. In some embodiments, the inner and outer skirts can be configured such that when the prosthetic valve is implanted, antegrade blood can flow through a space between the inflow edge portion of the inner skirt and the inflow edge portion of the outer skirt. In some embodiments, the inflow edge portion of the inner skirt can be loosely stitched to the inflow edge portion of the outer skirt.


In another representative embodiment, an assembly for implanting a prosthetic heart valve in a patient's body is provided. The assembly can comprise a delivery apparatus comprising an elongate shaft, and a prosthetic heart valve mounted on the shaft in a radially collapsed configuration for delivery into the body.


In another representative embodiment, a method of implanting a prosthetic heart valve in a patient's body is provided. The method can comprise radially compressing the prosthetic heart valve to a radially compressed configuration, coupling the prosthetic heart valve to the distal end of a delivery apparatus, inserting the distal end portion of the delivery apparatus and the prosthetic heart valve into a patient's body, positioning the prosthetic heart valve adjacent a native valve of the patient's heart, and radially expanding the prosthetic heart valve so that it engages the native valve. The prosthetic heart valve can comprise an annular frame comprising an inflow end and an outflow end and being radially collapsible and expandable between a radially collapsed configuration and a radially expanded configuration, a leaflet structure positioned within the frame and secured thereto, an annular inner skirt positioned around an inner surface of the frame, wherein the inner skirt comprises an outflow edge portion secured to the frame and an inflow edge portion that wraps around the inflow end of the frame and extends at least partially along an outer surface of the frame, the inflow edge portion being secured to the frame, and an outer skirt positioned around the outer surface of the frame, wherein the outer skirt comprises an outflow edge portion secured to the frame and an inwardly folded inflow edge portion that is secured to the inflow edge portion of the inner skirt.


In some embodiments, the outer skirt can engage the native valve and antegrade blood can flow through the space between the inflow edge portion of the outer skirt and the inflow edge portion of an inner skirt and enter space between the frame and the outer skirt to help seal the outer skirt against the native valve.


In some embodiments, the inflow edge portion of the inner skirt can be secured to the frame at discrete, space-apart locations. In such embodiments, the inflow edge portion of the outer skirt can be secured to the inflow edge portion of the inner skirt only at locations on the inflow edge portion of the inner skirt that are secured to the frame.


The foregoing and other objects, features, and advantages of the invention will become more apparent from the following detailed description, which proceeds with reference to the accompanying figures.





BRIEF DESCRIPTION OF THE DRAWINGS


FIGS. 1-3 show an exemplary embodiment of a prosthetic heart valve.



FIGS. 4-10 show an exemplary frame of the prosthetic heart valve of FIG. 1.



FIGS. 11-12 show an exemplary inner skirt of the prosthetic heart valve of FIG. 1.



FIG. 13 shows the prosthetic heart valve of FIG. 1 in a collapsed configuration and mounted on an exemplary balloon catheter.



FIGS. 14-16 show the assembly of the inner skirt of FIG. 11 with the frame of FIG. 4.



FIGS. 17-18 show the assembly of an exemplary leaflet structure.



FIG. 19 shows the assembly of commissure portions of the leaflet structure with window frame portions of the frame.



FIGS. 20-21 show the assembly of the leaflet structure with the inner skirt along a lower edge of the leaflets.



FIG. 22 shows a flattened view of an exemplary outer skirt.



FIG. 23 shows another exemplary embodiment of an outer skirt.



FIGS. 24-26 show various views of another exemplary embodiment of an outer skirt.



FIG. 27 shows a schematic view of a portion of the frame and the outer skirt of the prosthetic valve of FIG. 1 with the frame in an expanded configuration.



FIG. 28 shows a schematic view of the frame and the outer skirt of FIG. 27 with the frame in a collapsed configuration.



FIG. 29 shows another exemplary embodiment of an outer skirt.



FIGS. 30-31 show cross-sectional views of an exemplary embodiment of a prosthetic heart valve.



FIGS. 32-34 show various views of another exemplary embodiment of an outer skirt.



FIG. 35 shows an exemplary prosthetic heart valve implanted in the native aortic valve of a patient.



FIG. 36 shows an exemplary prosthetic heart valve and docking device implanted in the pulmonary artery of a patient.



FIG. 37 shows an exemplary prosthetic heart valve and docking device implanted in the native mitral valve of a patient.



FIGS. 38-39 show an alternative embodiment of a docking device for a prosthetic valve.



FIG. 40 shows an exemplary prosthetic heart valve and the docking device of FIGS. 38-39 implanted in the inferior vena cava of a patient.





DETAILED DESCRIPTION


FIGS. 1-3 show various views of a prosthetic heart valve 10, according to one embodiment. The illustrated prosthetic valve is adapted to be implanted in the native aortic annulus, although in other embodiments it can be adapted to be implanted in the other native annuluses of the heart (e.g., the pulmonary, mitral, and tricuspid valves). The prosthetic valve can also be adapted to be implanted in other tubular organs or passageways in the body. The prosthetic valve 10 can have four main components: a stent or frame 12, a valvular structure 14, an inner skirt 16, and a perivalvular sealing means or sealing member. The prosthetic valve 10 can have an inflow end portion 15, an intermediate portion 17, and an outflow end portion 19. In the illustrated embodiment, the perivalvular sealing means comprises an outer skirt 18.


The valvular structure 14 can comprise three leaflets 41, collectively forming a leaflet structure, which can be arranged to collapse in a tricuspid arrangement, as best shown in FIG. 2. The lower edge of leaflet structure 14 desirably has an undulating, curved scalloped shape (suture line 154 shown in FIG. 21 tracks the scalloped shape of the leaflet structure). By forming the leaflets with this scalloped geometry, stresses on the leaflets are reduced, which in turn improves durability of the prosthetic valve. Moreover, by virtue of the scalloped shape, folds and ripples at the belly of each leaflet (the central region of each leaflet), which can cause early calcification in those areas, can be eliminated or at least minimized. The scalloped geometry also reduces the amount of tissue material used to form leaflet structure, thereby allowing a smaller, more even crimped profile at the inflow end of the prosthetic valve. The leaflets 41 can be formed of pericardial tissue (e.g., bovine pericardial tissue), biocompatible synthetic materials, or various other suitable natural or synthetic materials as known in the art and described in U.S. Pat. No. 6,730,118, which is incorporated by reference in its entirety herein.


The bare frame 12 is shown in FIG. 4. The frame 12 can be formed with a plurality of circumferentially spaced slots, or commissure windows, 20 (three in the illustrated embodiment) that are adapted to connect the commissures of the valvular structure 14 to the frame, as described in greater detail below. The frame 12 can be made of any of various suitable plastically-expandable materials (e.g., stainless steel, etc.) or self-expanding materials (e.g., nickel titanium alloy (NiTi), such as nitinol). When constructed of a plastically-expandable material, the frame 12 (and thus the prosthetic valve 10) can be crimped to a radially collapsed configuration on a delivery catheter and then expanded inside a patient by an inflatable balloon or equivalent expansion mechanism. When constructed of a self-expandable material, the frame 12 (and thus the prosthetic valve 10) can be crimped to a radially collapsed configuration and restrained in the collapsed configuration by insertion into a sheath or equivalent mechanism of a delivery catheter. Once inside the body, the prosthetic valve can be advanced from the delivery sheath, which allows the prosthetic valve to expand to its functional size.


Suitable plastically-expandable materials that can be used to form the frame 12 include, without limitation, stainless steel, a biocompatible, high-strength alloys (e.g., a cobalt-chromium or a nickel-cobalt-chromium alloys), polymers, or combinations thereof. In particular embodiments, frame 12 is made of a nickel-cobalt-chromium-molybdenum alloy, such as MP35N® alloy (SPS Technologies, Jenkintown, Pa.), which is equivalent to UNS R30035 alloy (covered by ASTM F562-02). MP35N® alloy/UNS R30035 alloy comprises 35% nickel, 35% cobalt, 20% chromium, and 10% molybdenum, by weight. When MP35N® alloy is used as the frame material, as compared to stainless steel, less material is needed to achieve the same or better performance in radial and crush force resistance, fatigue resistances, and corrosion resistance. Moreover, since less material is required, the crimped profile of the frame can be reduced, thereby providing a lower profile prosthetic valve assembly for percutaneous delivery to the treatment location in the body.


Referring to FIGS. 4 and 5, the frame 12 in the illustrated embodiment comprises a first, lower row I of angled struts 22 arranged end-to-end and extending circumferentially at the inflow end of the frame; a second row II of circumferentially extending, angled struts 24; a third row III of circumferentially extending, angled struts 26; a fourth row IV of circumferentially extending, angled struts 28; and a fifth row V of circumferentially extending, angled struts 32 at the outflow end of the frame. A plurality of substantially straight axially extending struts 34 can be used to interconnect the struts 22 of the first row I with the struts 24 of the second row II. The fifth row V of angled struts 32 are connected to the fourth row IV of angled struts 28 by a plurality of axially extending window frame portions 30 (which define the commissure windows 20) and a plurality of axially extending struts 31. Each axial strut 31 and each frame portion 30 extends from a location defined by the convergence of the lower ends of two angled struts 32 to another location defined by the convergence of the upper ends of two angled struts 28. FIGS. 6, 7, 8, 9, and 10 are enlarged views of the portions of the frame 12 identified by letters A, B, C, D, and E, respectively, in FIG. 5.


Each commissure window frame portion 30 connects to a respective commissure of the leaflet structure 14. As can be seen each frame portion 30 is secured at its upper and lower ends to the adjacent rows of struts to provide a robust configuration that enhances fatigue resistance under cyclic loading of the prosthetic valve compared to cantilevered struts for supporting the commissures of the leaflet structure. This configuration enables a reduction in the frame wall thickness to achieve a smaller crimped diameter of the prosthetic valve. In particular embodiments, the thickness T of the frame 12 (FIG. 4) measured between the inner diameter and outer diameter is about 0.48 mm or less.


The struts and frame portions of the frame collectively define a plurality of open cells of the frame. At the inflow end of the frame 12, struts 22, struts 24, and struts 34 define a lower row of cells defining openings 36. The second, third, and fourth rows of struts 24, 26, and 28 define two intermediate rows of cells defining openings 38. The fourth and fifth rows of struts 28 and 32, along with frame portions 30 and struts 31, define an upper row of cells defining openings 40. The openings 40 are relatively large and are sized to allow portions of the leaflet structure 14 to protrude, or bulge, into and/or through the openings 40 when the frame 12 is crimped in order to minimize the crimping profile.


As best shown in FIG. 7, the lower end of the strut 31 is connected to two struts 28 at a node or junction 44, and the upper end of the strut 31 is connected to two struts 32 at a node or junction 46. The strut 31 can have a thickness S1 that is less than the thicknesses S2 of the junctions 44, 46. The junctions 44, 46, along with junctions 64, prevent full closure of openings 40. FIG. 13 shows the prosthetic valve 10 crimped on a balloon catheter. As can be seen, the geometry of the struts 31, and junctions 44, 46, and 64 assists in creating enough space in openings 40 in the collapsed configuration to allow portions of the prosthetic leaflets to protrude or bulge outwardly through openings. This allows the prosthetic valve to be crimped to a relatively smaller diameter than if all of the leaflet material were constrained within the crimped frame.


The frame 12 is configured to reduce, to prevent, or to minimize possible over-expansion of the prosthetic valve at a predetermined balloon pressure, especially at the outflow end portion of the frame, which supports the leaflet structure 14. In one aspect, the frame is configured to have relatively larger angles 42a, 42b, 42c, 42d, 42e between struts, as shown in FIG. 5. The larger the angle, the greater the force required to open (expand) the frame. As such, the angles between the struts of the frame can be selected to limit radial expansion of the frame at a given opening pressure (e.g., inflation pressure of the balloon). In particular embodiments, these angles are at least 110 degrees or greater when the frame is expanded to its functional size, and even more particularly these angles are up to about 120 degrees when the frame is expanded to its functional size.


In addition, the inflow and outflow ends of a frame generally tend to over-expand more so than the middle portion of the frame due to the “dog-boning” effect of the balloon used to expand the prosthetic valve. To protect against over-expansion of the leaflet structure 14, the leaflet structure desirably is secured to the frame 12 below the upper row of struts 32, as best shown in FIG. 1. Thus, in the event that the outflow end of the frame is over-expanded, the leaflet structure is positioned at a level below where over-expansion is likely to occur, thereby protecting the leaflet structure from over-expansion.


In one type of prosthetic valve construction, portions of the leaflets protrude longitudinally beyond the outflow end of the frame when the prosthetic valve is crimped if the leaflets are connected too close to the distal end of the frame. If the delivery catheter on which the crimped prosthetic valve is mounted includes a pushing mechanism or stop member that pushes against or abuts the outflow end of the prosthetic valve (for example, to maintain the position of the crimped prosthetic valve on the delivery catheter), the pushing member or stop member can damage the portions of the exposed leaflets that extend beyond the outflow end of the frame. Another benefit of connecting the leaflets at a location spaced away from the outflow end of the frame is that when the prosthetic valve is crimped on a delivery catheter, the outflow end of the frame 12 rather than the leaflets 41 is the proximal-most component of the prosthetic valve 10. As such, if the delivery catheter includes a pushing mechanism or stop member that pushes against or abuts the outflow end of the prosthetic valve, the pushing mechanism or stop member contacts the outflow end of the frame, and not leaflets 41, so as to avoid damage to the leaflets.


Also, as can be seen in FIG. 5, the openings 36 of the lowermost row of openings in the frame are relatively larger than the openings 38 of the two intermediate rows of openings. This allows the frame, when crimped, to assume an overall tapered shape that tapers from a maximum diameter at the outflow end of the prosthetic valve to a minimum diameter at the inflow end of the prosthetic valve. When crimped, the frame 12 can have a reduced diameter region extending along a portion of the frame adjacent the inflow end of the frame that generally corresponds to the region of the frame covered by the outer skirt 18. In some embodiments, the reduced diameter region is reduced compared to the diameter of the upper portion of the frame (which is not covered by the outer skirt) such that the outer skirt 18 does not increase the overall crimp profile of the prosthetic valve. When the prosthetic valve is deployed, the frame can expand to the generally cylindrical shape shown in FIG. 4. In one example, the frame of a 26-mm prosthetic valve, when crimped, had a first diameter of 14 French at the outflow end of the prosthetic valve and a second diameter of 12 French at the inflow end of the prosthetic valve.


The main functions of the inner skirt 16 are to assist in securing the valvular structure 14 to the frame 12 and to assist in forming a good seal between the prosthetic valve and the native annulus by blocking the flow of blood through the open cells of the frame 12 below the lower edge of the leaflets. The inner skirt 16 desirably comprises a tough, tear resistant material such as polyethylene terephthalate (PET), although various other synthetic materials or natural materials (e.g., pericardial tissue) can be used. The thickness of the skirt desirably is less than about 0.15 mm (about 6 mil), and desirably less than about 0.1 mm (about 4 mil), and even more desirably about 0.05 mm (about 2 mil). In particular embodiments, the skirt 16 can have a variable thickness, for example, the skirt can be thicker at least one of its edges than at its center. In one implementation, the skirt 16 can comprise a PET skirt having a thickness of about 0.07 mm at its edges and about 0.06 mm at its center. The thinner skirt can provide for better crimping performances while still providing good sealing.


The skirt 16 can be secured to the inside of frame 12 via sutures 70, as shown in FIG. 21. Valvular structure 14 can be attached to the skirt via one or more reinforcing strips 72 (which collectively can form a sleeve), for example thin, PET reinforcing strips, discussed below, which enables a secure suturing and protects the pericardial tissue of the leaflet structure from tears. Valvular structure 14 can be sandwiched between skirt 16 and the thin PET strips 72 as shown in FIG. 20. Sutures 154, which secure the PET strip and the leaflet structure 14 to skirt 16, can be any suitable suture, such as Ethibond Excel® PET suture (Johnson & Johnson, New Brunswick, N.J.). Sutures 154 desirably track the curvature of the bottom edge of leaflet structure 14, as described in more detail below.


Some fabric skirts comprise a weave of warp and weft fibers that extend perpendicularly to each other and with one set of the fibers extending longitudinally between the upper and lower edges of the skirt. When the metal frame to which such a fabric skirt is secured is radially compressed, the overall axial length of the frame increases. However, a fabric skirt with limited elasticity cannot elongate along with the frame and therefore tends to deform the struts of the frame and to prevent uniform crimping.


Referring to FIG. 12, in one embodiment, the skirt 16 desirably is woven from a first set of fibers, or yarns or strands, 78 and a second set of fibers, or yarns or strands, 80, both of which are non-perpendicular to the upper edge 82 and the lower edge 84 of the skirt. In particular embodiments, the first set of fibers 78 and the second set of fibers 80 extend at angles of about 45 degrees (e.g., 15-75 degrees or 30-60 degrees) relative to the upper and lower edges 82, 84. For example, the skirt 16 can be formed by weaving the fibers at 45 degree angles relative to the upper and lower edges of the fabric. Alternatively, the skirt 16 can be diagonally cut (cut on a bias) from a vertically woven fabric (where the fibers extend perpendicularly to the edges of the material) such that the fibers extend at 45 degree angles relative to the cut upper and lower edges of the skirt. As further shown in FIG. 12, the opposing short edges 86, 88 of the skirt desirably are non-perpendicular to the upper and lower edges 82, 84. For example, the short edges 86, 88 desirably extend at angles of about 45 degrees relative to the upper and lower edges and therefore are aligned with the first set of fibers 78. Therefore the overall general shape of the skirt is that of a rhomboid or parallelogram.



FIGS. 14 and 15 show the inner skirt 16 after opposing short edge portions 90, 92 have been sewn together to form the annular shape of the skirt. As shown, the edge portion 90 can be placed in an overlapping relationship relative to the opposite edge portion 92, and the two edge portions can be sewn together with a diagonally extending suture line 94 that is parallel to short edges 86, 88. The upper edge portion of the inner skirt 16 can be formed with a plurality of projections 96 that define an undulating shape that generally follows the shape or contour of the fourth row of struts 28 immediately adjacent the lower ends of axial struts 31. In this manner, as best shown in FIG. 16, the upper edge of the inner skirt 16 can be tightly secured to struts 28 with sutures 70. The inner skirt 16 can also be formed with slits 98 to facilitate attachment of the skirt to the frame. Slits 98 can be dimensioned so as to allow an upper edge portion of the inner skirt 16 to be partially wrapped around struts 28 and to reduce stresses in the skirt during the attachment procedure. For example, in the illustrated embodiment, the inner skirt 16 is placed on the inside of frame 12 and an upper edge portion of the skirt is wrapped around the upper surfaces of struts 28 and secured in place with sutures 70. Wrapping the upper edge portion of the inner skirt 16 around struts 28 in this manner provides for a stronger and more durable attachment of the skirt to the frame. The inner skirt 16 can also be secured to the first, second, and/or third rows of struts 22, 24, and 26, respectively, with sutures 70.


Referring again to FIG. 12, due to the angled orientation of the fibers relative to the upper and lower edges in this embodiment, the skirt can undergo greater elongation in the axial direction (i.e., in a direction from the upper edge 82 to the lower edge 84).


Thus, when the metal frame 12 is crimped (as shown in FIG. 13), the inner skirt 16 can elongate in the axial direction along with the frame and therefore provide a more uniform and predictable crimping profile. Each cell of the metal frame in the illustrated embodiment includes at least four angled struts that rotate towards the axial direction on crimping (e.g., the angled struts become more aligned with the length of the frame). The angled struts of each cell function as a mechanism for rotating the fibers of the skirt in the same direction of the struts, allowing the skirt to elongate along the length of the struts. This allows for greater elongation of the skirt and avoids undesirable deformation of the struts when the prosthetic valve is crimped.


In addition, the spacing between the woven fibers or yarns can be increased to facilitate elongation of the skirt in the axial direction. For example, for a PET inner skirt 16 formed from 20-denier yarn, the yarn density can be about 15% to about 30% lower than in a typical PET skirt. In some examples, the yarn spacing of the inner skirt 16 can be from about 60 yarns per cm (about 155 yarns per inch) to about 70 yarns per cm (about 180 yarns per inch), such as about 63 yarns per cm (about 160 yarns per inch), whereas in a typical PET skirt the yarn spacing can be from about 85 yarns per cm (about 217 yarns per inch) to about 97 yarns per cm (about 247 yarns per inch). The oblique edges 86, 88 promote a uniform and even distribution of the fabric material along inner circumference of the frame during crimping so as to facilitate uniform crimping to the smallest possible diameter. Additionally, cutting diagonal sutures in a vertical manner may leave loose fringes along the cut edges. The oblique edges 86, 88 help minimize this from occurring.


In alternative embodiments, the skirt can be formed from woven elastic fibers that can stretch in the axial direction during crimping of the prosthetic valve. The warp and weft fibers can run perpendicularly and parallel to the upper and lower edges of the skirt, or alternatively, they can extend at angles between 0 and 90 degrees relative to the upper and lower edges of the skirt, as described above.


The inner skirt 16 can be sutured to the frame 12 at locations away from the suture line 154 so that the skirt can be more pliable in that area. This configuration can avoid stress concentrations at the suture line 154, which attaches the lower edges of the leaflets to the inner skirt 16.


As noted above, the leaflet structure 14 in the illustrated embodiment includes three flexible leaflets 41 (although a greater or a smaller number of leaflets can be used). Additional information regarding the leaflets, as well as additional information regarding skirt material, can be found, for example, in U.S. patent application Ser. No. 14/704,861, filed May 5, 2015, which is incorporated by reference in its entirety.


The leaflets 41 can be secured to one another at their adjacent sides to form commissures 122 of the leaflet structure. A plurality of flexible connectors 124 (one of which is shown in FIG. 17) can be used to interconnect pairs of adjacent sides 116 of the leaflets and to connect the leaflets to the commissure window frame portions 30 (FIG. 5).



FIG. 17 shows the adjacent sides 116 of two leaflets 41 interconnected by a flexible connector 124. Three leaflets 41 can be secured to each other side-to-side using three flexible connectors 124, as shown in FIG. 18. Additional information regarding connecting the leaflets to each other, as well as connecting the leaflets to the frame, can be found, for example, in U.S. Patent Application Publication No. 2012/0123529, which is incorporated by reference herein in its entirety.


As noted above, the inner skirt 16 can be used to assist in suturing the leaflet structure 14 to the frame. The inner skirt 16 can have an undulating temporary marking suture to guide the attachment of the lower edges of each leaflet 41. The inner skirt 16 itself can be sutured to the struts of the frame 12 using sutures 70, as noted above, before securing the leaflet structure 14 to the skirt 16. The struts that intersect the marking suture desirably are not attached to the inner skirt 16. This allows the inner skirt 16 to be more pliable in the areas not secured to the frame and minimizes stress concentrations along the suture line that secures the lower edges of the leaflets to the skirt. As noted above, when the skirt is secured to the frame, the fibers 78, 80 of the skirt (see FIG. 12) generally align with the angled struts of the frame to promote uniform crimping and expansion of the frame.



FIG. 19 shows one specific approach for securing the commissure portions 122 of the leaflet structure 14 to the commissure window frame portions 30 of the frame. In this approach, the flexible connector 124 (FIG. 18) securing two adjacent sides of two leaflets is folded widthwise and the upper tab portions 112 are folded downwardly against the flexible connector. Each upper tab portion 112 is creased lengthwise (vertically) to assume an L-shape having an inner portion 142 folded against the inner surface of the leaflet and an outer portion 144 folded against the connector 124. The outer portion 144 can then be sutured to the connector 124 along a suture line 146. Next, the commissure tab assembly is inserted through the commissure window 20 of a corresponding window frame portion 30, and the folds outside of the window frame portion 30 can be sutured to portions 144 along suture line 150.



FIG. 19 also shows that the folded down upper tab portions 112 can form a double layer of leaflet material at the commissures. The inner portions 142 of the upper tab portions 112 are positioned flat against layers of the two leaflets 41 forming the commissures, such that each commissure comprises four layers of leaflet material just inside of the window frames 30. This four-layered portion of the commissures can be more resistant to bending, or articulating, than the portion of the leaflets 41 just radially inward from the relatively more-rigid four-layered portion. This causes the leaflets 41 to articulate primarily at inner edges 143 of the folded-down inner portions 142 in response to blood flowing through the prosthetic valve during operation within the body, as opposed to articulating about or proximal to the axial struts of the window frames 30. Because the leaflets articulate at a location spaced radially inwardly from the window frames 30, the leaflets can avoid contact with and damage from the frame. However, under high forces, the four layered portion of the commissures can splay apart about a longitudinal axis adjacent to the window frame 30, with each inner portion 142 folding out against the respective outer portion 144. For example, this can occur when the prosthetic valve 10 is compressed and mounted onto a delivery shaft, allowing for a smaller crimped diameter. The four-layered portion of the commissures can also splay apart about the longitudinal axis when the balloon catheter is inflated during expansion of the prosthetic valve, which can relieve some of the pressure on the commissures caused by the balloon, reducing potential damage to the commissures during expansion.


After all three commissure tab assemblies are secured to respective window frame portions 30, the lower edges of the leaflets 41 between the commissure tab assemblies can be sutured to the inner skirt 16. For example, as shown in FIG. 20, each leaflet 41 can be sutured to the inner skirt 16 along suture line 154 using, for example, Ethibond Excel® PET thread. The sutures can be in-and-out sutures extending through each leaflet 41, the inner skirt 16, and each reinforcing strip 72. Each leaflet 41 and respective reinforcing strip 72 can be sewn separately to the inner skirt 16. In this manner, the lower edges of the leaflets are secured to the frame 12 via the inner skirt 16. As shown in FIG. 20, the leaflets can be further secured to the skirt with blanket sutures 156 that extend through each reinforcing strip 72, leaflet 41 and the inner skirt 16 while looping around the edges of the reinforcing strips 72 and leaflets 41. The blanket sutures 156 can be formed from PTFE suture material. FIG. 21 shows a side view of the frame 12, leaflet structure 14 and the inner skirt 16 after securing the leaflet structure 14 and the inner skirt 16 to the frame 12 and the leaflet structure 14 to the inner skirt 16.



FIG. 22 shows a flattened view of the outer skirt 18 prior to its attachment to the frame 12. The outer skirt 18 can be laser cut or otherwise formed from a strong, durable material such as PET or various other suitable synthetic or natural materials configured to restrict and/or prevent blood-flow therethrough. The outer skirt 18 can comprise a substantially straight lower edge 160 and an upper edge portion 162 defining a plurality of alternating projections 164 and notches 166, or castellations. The outer skirt 18 can also comprise a plurality of openings 167 (e.g., 12 in the illustrated embodiment) disposed on an intermediate portion 169 (i.e., the portion between the lower edge 160 and the upper edge portion 162) of the outer skirt 18. The openings 167 are spaced from the lower edge 160 and the upper edge portion 162 such that the material of the outer skirt 18 separates the openings 167 from the lower edge 160 and the upper edge portion 162.


As best shown in FIG. 3, in some embodiments, a lower edge portion 174 of the outer skirt 18 can be wrapped around the inflow end 15 of the frame 12, and the lower edge 160 of the outer skirt 18 can be attached to the lower edge 84 of the inner skirt 16 and/or the frame 12 at the inflow end of the prosthetic valve 10. In some embodiments, the outer skirt 18 can be attached to the inner skirt 16, for example, with sutures or a suitable adhesive.


In lieu of or in addition to sutures, the outer skirt 18 can be attached to the inner skirt 16, for example, by ultrasonic welding. Ultrasonic welding can provide several significant advantages. For example, ultrasonic welding can be relatively less time consuming and less expensive compared to suturing, while also providing improved strength.


As shown in FIG. 1, each projection 164 of the outer skirt 18 can be attached to the third row III of struts 26 (FIG. 5) of the frame 12. The projections 164 can, for example, be wrapped over respective struts 26 of row III and secured with sutures 168.


As can be seen in FIGS. 1-3, the outer skirt 18 is secured to the frame 12 such that when the frame is in its expanded configuration (e.g., when deployed in a subject), there is excess material between the lower edge 160 and the upper edge portion 162 that does not lie flat against the outer surface of the frame 12. The outer skirt 18 can be secured directly to frame 12 and/or indirectly to frame 12, for example, by securing the outer skirt 18 to the inner skirt 16, which is directly secured to the frame 12. In the expanded configuration of the prosthetic valve, the distance between the upper and lower attachment points of the outer skirt 18 decreases (foreshortens), resulting in radial expansion of the outer skirt 18. Additionally, the excess material between the lower and upper edges of the outer skirt 18 allows the frame 12 to elongate axially when crimped without any resistance from the outer skirt 18.


The outer skirt 18 can comprise an axial length or height Hs. In some embodiments, Hs is the height of the outer skirt 18, less the lower edge portion 174 that is wrapped around the inflow end 15 of the frame 12, as best shown in FIGS. 1, 3, and 22. In some embodiments, the height Hs can be substantially the same as the axial length between the upper attachment point of the outer skirt 18 to the frame 12 and the inflow end 15 of the frame 12 when the frame 12 is fully crimped. In such embodiments, when the frame 12 is fully crimped, the outer skirt 18 can lie flat against the outer surface of the frame 12. In other embodiments, the height Hs of the outer skirt 18 can exceed the axial length between the upper attachment point of the outer skirt 18 to the frame 12 and the inflow end 15 of the frame 12 when the frame 12 is fully crimped. In such embodiments, the outer skirt 18 can comprise a plurality of creases 170 (e.g., twelve in the illustrated embodiment).


As best shown in FIG. 3, the creases 170 can extend axially from the lower edge 160 toward the intermediate portion 169 of the outer skirt 18. The creases 170 can be aligned circumferentially with respective projections 164, and the outer skirt 18 can be oriented with respect to the frame 12 such that the creases 170 are circumferentially aligned between a respective pair of apices 22a (FIG. 5) that are formed by the struts 22 at the inflow end 15 of the frame 12. For example, the creases 170 can be circumferentially aligned along a respective vertical line 172 (FIGS. 2 and 5) that is parallel to the longitudinal axis of the frame 12 and bisects the frame 12 at a location equidistant from each apex 22a of a respective pair of apices 22a. In this manner, the creases 170 can cause excess material of the outer skirt 18 to retract radially inwardly between the apices 22a and into the inflow end 15 of the frame 12 when the prosthetic valve 10 is crimped from the expanded configuration. As best shown in FIG. 2, each crease 170 can be circumferentially aligned with a respective opening 167 and projection 164 along a respective line 172.


Referring to FIGS. 27-28, in lieu of or in addition to the creases 170 (FIG. 1), the outer skirt 18 can be attached and/or positioned relative to the frame 12 such that the lower edge 160 of the outer skirt 18 contacts the inflow end 15 of the frame 12 at locations (e.g., apices 22a) that are offset relative to locations (e.g., the junctions 64) at which the upper edge portion 162 of the outer skirt 18 contacts the outflow end 19 of the frame 12. Configuring the outer skirt 18 and the frame 12 in this manner can cause excess material of the outer skirt 18 to retract inwardly between the apices 22a of the frame 12 when the prosthetic valve 10 is crimped from the expanded configuration (e.g., FIG. 27) to the collapsed configuration (e.g., FIG. 28), as shown in FIG. 28.


This configuration also spreads the deformed fabric of the collapsed outer skirt 18 over a relatively large distance, which reduces the amount of outer skirt material per cross sectional area and flattens the outer skirt 18 around the crimped frame 12, thus reducing the crimped profile of the prosthetic heart valve 10. Reducing the crimped profile of the prosthetic heart valve 10 can reduce the push force necessary to move the prosthetic heart valve 10 relative to a patient's vasculature or a delivery cylinder of a delivery apparatus. It can also reduce the compression force that is exerted upon the leaflets 41 to achieve a particular crimp profile, which can reduce and/or eliminate damage to the leaflets 41 caused by over compressing the leaflets 41 during crimping and/or delivery of the prosthetic heart valve 10 to an implantation location.


Retracting the excess material within the frame 12 below the leaflets 41 when the prosthetic valve 10 is crimped advantageously allows the prosthetic valve 10 to have a relatively large outer skirt 18, which can significantly reduce perivalvular leakage, while minimizing the radial crimp profile of the prosthetic valve 10. For example, the height Hs of the outer skirt 18 can be about 9 mm to about 25 mm or about 13 mm to about 20 mm, with about 19 mm being a specific example. The height Hf of the frame 12 in the radially expanded state can be about 12 mm to about 27 mm or about 15 mm to about 23 mm, with about 20 mm being a specific example. The outer skirt 18 can be sized such that a ratio Hs:Hf, where Hs (FIG. 22) is the height of the outer skirt 18, and Hf (FIG. 5) is the height of the frame 12 in the expanded state, can be between about 0.75 to about 0.95. In some embodiments, the ratio Hs:Hf can be between about 0.80 to about 0.90 or about 0.84 to about 0.87. In one particular embodiment, the ratio Hs:Hf can be 0.86.


Providing a relatively larger outer skirt 18 allows the prosthetic valve 10 to be positioned in a wider range of positions relative to the native annulus, while providing adequate perivalvular sealing. This improved range can make the prosthetic valve 10 easier to position during the implantation procedure. It also allows the prosthetic valve to adapt to greater variation in native annulus anatomy.


In addition, the creases 170 can assist the outer skirt 18 in collapsing in a predetermined, uniform manner when the prosthetic valve is crimped and allows the outer skirt 18 to expand to its functional state more quickly and consistently when deploying the prosthetic valve 10, as further described below.


Each crease 170 can be formed, for example, by overlapping adjacent portions of the outer skirt 18 and securing them together. The creases can then be secured in the overlapped state, for example, by sutures, ultrasonic welding, and/or an adhesive. The creases 170 can be referred to as permanent creases in that the creases are retained when the prosthetic valve 10 is in a radially compressed state and a radially expanded state.


As best shown in FIG. 22, the openings 167 can be laterally (circumferentially in FIGS. 1-3) spaced apart relative to adjacent openings 167 and be laterally (circumferentially in FIGS. 1-3) aligned with a respective projection 164. The openings 167 can also be circumferentially aligned with respective creases 170, as best shown in FIGS. 1 and 3. For example, the projections 164, the openings 167, and the creases 170 can be aligned along the respective vertical lines 172, as best shown in FIG. 2. Aligning the openings 167 and the creases 170 can, for example, allow blood to quickly enter, and thus expose much more surface area of the skirt material to blood. In addition, the overlapped portions of the outer skirt 18 can expand when the prosthetic valve is initially deployed, as further described below.


The openings 167 can comprise various shapes. For example, the openings 167 can comprise a tear-drop shape, as shown in the illustrated embodiment. In other embodiments, the openings can be circular, elliptical, rectangular, etc.


The prosthetic valve 10 can be configured for and mounted on a suitable delivery apparatus for implantation in a subject. Several catheter-based delivery apparatuses are known; a non-limiting example of a suitable catheter-based delivery apparatus includes that disclosed in U.S. Patent Application Publication No. 2013/0030519, which is incorporated by reference herein in its entirety, and U.S. Patent Application Publication No. 2012/0123529.


To implant a plastically-expandable prosthetic valve 10 within a patient, the prosthetic valve 10 including the outer skirt 18 can be crimped on an elongated shaft 180 of a delivery apparatus, as best shown in FIG. 14. The prosthetic valve, together with the delivery apparatus, can form a delivery assembly for implanting the prosthetic valve 10 in a patient's body. The shaft 180 comprises an inflatable balloon 182 for expanding the prosthetic valve within the body. With the balloon 182 deflated, the prosthetic valve 10 can then be percutaneously delivered to a desired implantation location (e.g., a native aortic valve region). Once the prosthetic valve 10 is delivered to the implantation site (e.g., the native aortic valve) inside the body, the prosthetic valve 10 can be radially expanded to its functional state by inflating the balloon 182.


Alternatively, a self-expanding prosthetic valve 10 can be crimped to a radially collapsed configuration and restrained in the collapsed configuration by inserting the prosthetic valve 10, including the outer skirt 18, into a sheath or equivalent mechanism of a delivery catheter. The prosthetic valve 10 can then be percutaneously delivered to a desired implantation location. Once inside the body, the prosthetic valve 10 can be advanced from the delivery sheath, which allows the prosthetic valve to expand to its functional state.



FIG. 23 shows an exemplary embodiment of an outer skirt 200. The outer skirt 200 can comprise a first end portion 202 (i.e., the upper end portion as depicted in FIG. 23), a second end portion 204 (i.e., the lower end portion as depicted in FIG. 23), and an intermediate portion 206 disposed between the first and second end portions 202, 204.


The first end portion 202 of the outer skirt 200 can include a plurality of alternating projections 208 and notches 210 and can also include a plurality of first openings 212. The first end portion 202 can be configured similar to the projections 164, the notches 166, and the openings 167 of the outer skirt 18. For example, the first openings 212 can be circumferentially aligned with the projections 208 and circumferentially offset relative to the notches 210. The first end portion 202 can be attached to an inner skirt and/or frame of a prosthetic heart valve, as further described below.


The first openings 212 can comprise various sizes and/or shapes. For example, as shown in FIG. 23, the first openings 212 comprise a “tear-drop” shape. In other embodiments, the first openings 212 can be larger (e.g., elongate) or smaller and can comprise various other shapes (e.g., circular, rectangular, or ovular) than those shown in the illustrated embodiment.


The first end portion 202 of the outer skirt 200 can comprise first outer diameter. In some embodiments, the first, outer diameter of the first end portion 202 is at least substantially similar to a second, outer diameter of the second end portion 204 and smaller than a third, outer diameter of the intermediate portion 206. In other embodiments, the first diameter of the first end portion 202 can be smaller than the second diameter of the second end portion 204 and the third diameter of the intermediate portion 206. In yet other embodiments, the first diameter of the first end portion 202 can be larger than the second diameter of the second end portion 204 and can be smaller than the third diameter of the intermediate portion 206.


The second end portion 204 of the outer skirt 200 can comprise a substantially straight lower edge 214. The second end portion 204 can be attached to an inner skirt and/or frame of a prosthetic heart valve, as further described below. The second diameter of the second end portion can be smaller than the third diameter of the intermediate portion 206.


The intermediate portion 206 of the outer skirt 200 can comprise a radially outwardly facing surface 216. As shown, in some embodiments, the surface 216 can be relatively flat. In other embodiments, the surface 216 can be relatively tapered, from the first end portion 202 to the second end portion 204, or vice versa. In yet other embodiments, the surface 216 can be relatively curved or rounded.


In some embodiments, the surface 216 of the intermediate portion 206 can comprise a plurality of second openings 217. The second openings 217 can be spaced apart relative to each other, circumferentially aligned with the notches 210 of the first end portion 202, and circumferentially offset relative to the first openings 212 and the projections 208 of the first end portion 202. The second openings 217 can comprise various shapes and/or sizes, including diamond-shaped (as shown in FIG. 23), circular, rectangular, ovular, etc. In alternative embodiments, the surface 216 can be formed without the second openings 217.


The intermediate portion 206 can also comprise first and second transition sections 218, 220 separated relative to each other by the surface 216 and disposed adjacent to the first and second end portions 202, 204, respectively. In some embodiments, the transition sections 218, 220 can be at least substantially perpendicular to the surface 216. In such embodiments, the outer diameter of the outer skirt 200 abruptly transitions from the respective first and second diameters of the first and second end portions 202, 204 to the third diameter of the intermediate portion 206 in a step- or flange-like manner. In other embodiments, the transition sections 218, 220 can be angled between the respective end portions 202, 204 and the surface 216 such that the outer diameter of the outer skirt 200 tapers from the respective first and second diameters of the end portions 202, 204 to the third diameter of the intermediate portion 206.


The outer skirt 200 can be coupled to a frame and/or an inner skirt of a prosthetic heart valve similar to the manner in which the outer skirt 18 is coupled to the frame 12 and/or the inner skirt 16 of the prosthetic heart valve 10. For example, the outer skirt 200 can be attached to a frame and/or inner skirt of a prosthetic heart valve by sutures and/or ultrasonic welding.


The outer skirt 200 can be formed of materials such as PET, PTFE, ePTFE, polyurethane, polyester, and/or other suitable materials configured to restrict and/or prevent blood-flow therethrough. In some embodiments, the outer skirt 200 can be formed from a generally flat strip (e.g., similar to the outer skirt 18 as shown in FIG. 22) and formed into a tube by welding the ends together, as shown in FIG. 23. In other embodiments, the outer skirt 200 can be formed by weaving the outer skirt 200 into a tubular shape. The intermediate portion 206 can be formed, for example, by shape-setting the material to a desired configuration (e.g., as shown in FIG. 23).


The outer skirt 200 can be configured to be radially compressed to a delivery configuration and to radially expand from the delivery configuration to a function configuration, in a manner similar to the outer skirt 18. In some embodiments, the outer skirt 200 can be self-expandable, such as by including Nitinol threads in the outer skirt 200.


In this manner, the outer skirt 200 in conjunction with the inner skirt 16 can reduce and/or eliminate perivalvular leakage between a frame of a prosthetic heart valve and a native annulus. As a result, the outer skirt 200 can improve functionality of a prosthetic heart valve and thus improve functionality of a patient's heart.



FIGS. 24-26 show an exemplary embodiment of an outer skirt 300. FIG. 24 shows a flattened view of the outer skirt 300 prior to its attachment to a prosthetic heart valve. FIGS. 25-26 show the outer skirt 300 attached to the prosthetic heart valve 10 in lieu of outer skirt 18.


Referring to FIG. 24, the outer skirt 300 can comprise a first end portion 302 (i.e., the upper end portion as depicted in FIG. 24), a second end portion 304 (i.e., the lower end portion as depicted in FIG. 25), and an intermediate portion 306 disposed between the first and second end portions 302, 304. The first end portion 302 of the outer skirt 300 can include a plurality of alternating projections 308 and notches 310, or castellations. The second end portion 304 of the outer skirt 300 can comprise a substantially straight lower edge 312 and can have a plurality of openings 314. The openings 314 can be laterally spaced apart relative to each other and laterally aligned with the projections 308 of the first end portion 302 and laterally offset relative to the notches 310 of the first end portion 302. The openings 314 can comprise various sizes and/or geometric shapes, including circular, ovular, rectangular, and/or combinations of shapes.


Referring to FIG. 25, the projections 308 of the first end portion 302 can be attached to the inner skirt 16 and/or the frame 12 of the prosthetic heart valve 10 using sutures (as shown) and/or ultrasonic welding. As shown in FIG. 26, the lower edge 312 of the second end portion 304 can be attached to the inner skirt 16 and/or the frame 12 of the prosthetic heart valve 10 using sutures (as shown) and/or ultrasonic welding.


The outer skirt 300 can be formed of materials such as PET, PTFE, ePTFE, polyurethane, polyester, and/or other suitable materials configured to restrict and/or prevent blood-flow therethrough.


The outer skirt 300 can reduce and/or eliminate perivalvular leakage when the prosthetic heart valve 10 is implanted in a native heart valve annulus (e.g., a native aortic valve annulus or a native mitral valve annulus). For example, blood flowing from the inflow end portion 15 (FIG. 26) toward the outflow end portion 19 (FIG. 25) of the prosthetic heart valve 10 (i.e., antegrade blood flow) can enter the outer skirt 300 through the openings 314 of the second end portion 304, as best shown FIG. 26. Similarly, blood flowing from the outflow end portion 19 toward the inflow end portion 15 of the prosthetic heart valve 10 (i.e., retrograde blood flow) can enter the outer skirt 300 through the notches 310 of the first end portion 302, as best shown in FIG. 25. The blood-flow entering the openings 314 and/or the notches 310 cannot pass directly through the outer skirt 300 because the openings 314 and the notches 310 are circumferentially offset relative to each other.



FIG. 29 shows an exemplary embodiment of an outer skirt 400. The outer skirt 400 can be configured similar to the outer skirt 18 of the prosthetic heart valve 10 and can be attached to the prosthetic heart valve 10 in a manner similar to the outer skirt 18. In some embodiments and in lieu of or in addition to creases at the inflow end portion 15 of the prosthetic heart valve 10 (e.g., the creases 170 of the outer skirt 18), the outer skirt 400 can have creases 402 extending axially from a first end portion 404 of the outer skirt 400 to a second end portion 406 of the outer skirt 400. The creases 402 can be circumferentially aligned with notches 408 and circumferentially offset relative to projections 410 of the first end portion 404.


In this manner, the outer skirt 400 can expand from a compressed configuration to an expanded configuration (and vice versa) in a uniform and/or predictable manner, similar to a bellows or an accordion. As a result, the creases 402 facilitate uniform crimping and/or expansion and/or reduce the crimped radial profile of a prosthetic heart valve in compressed delivery configuration.


In some embodiments, the outer skirt 400 can comprise one or more reeds or valves configured to allow blood to flow into and/or through the outer skirt 400.


The outer skirt 400 can be formed, for example, by shape setting the outer skirt in this manner. In some embodiments, the creases 402 can be formed by ultrasonic welding.



FIGS. 30-31 show cross-sectional views of the frame 12, the inner skirt 16, and the outer skirt 18 in an alternative embodiment of the prosthetic heart valve 10 in its expanded configuration (e.g., when deployed in a subject). FIG. 30 shows a cross-sectional view of the frame 12, the inner skirt 16, and the outer skirt 18 through vertical line 172 (FIGS. 2 and 5) and FIG. 31 shows a cross-sectional view of the frame 12, the inner skirt 16, and the outer skirt 18 through vertical line 173 (FIGS. 2 and 5).


Referring to FIGS. 30 and 31, the inner skirt 16 comprises an upper edge portion 48 and a lower edge portion 50. The upper edge portion 48 of the inner skirt 16 can be secured to the inside of the frame 12. The upper edge portion 48 of the inner skirt 16 can be secured to the inside of frame 12 via sutures 70 as previously described and as best shown in FIG. 21. Alternatively, the upper edge portion 48 of the inner skirt 16 can be secured to the inside of frame 12 via adhesive and/or ultrasonic welding in addition to or in lieu of sutures 70. In the illustrated embodiment of FIGS. 30 and 31, the upper edge portion 48 of the inner skirt 16 is secured to struts 28 (not shown in FIGS. 30 and 31) via sutures 70 as best shown in FIG. 22. Alternatively, the upper edge portion 48 of the inner skirt 16 can be secured to any other portion or portions of the frame 12. The upper edge portion 48 is shown loosely attached to the frame in FIGS. 30-31 for purposes of illustration, but typically is tightly secured to the frame struts as depicted in FIG. 22.


In the illustrated embodiment of FIGS. 30 and 31, the lower edge portion 50 of the inner skirt 16 is wrapped around the inflow end portion 15 of the frame 12 and is exposed to the outside of frame 12. Still referring to FIGS. 30 and 31, the upper edge portion 162 of the outer skirt 18 can be secured to the outside of the frame 12 as previously described. The upper edge portion 162 of the outer skirt 18 can contain projections 164 as best shown in FIG. 22 that can be secured to struts 26 (not shown in FIGS. 30 and 31) with sutures 168 as best shown in FIG. 1, although such projections are not required and the upper edge can be straight.


The lower edge portion 174 of the outer skirt 18 can be folded inward towards the frame 12 such that folded lower edge portion 174 of the outer skirt 18 is adjacent to the wrapped lower edge portion 50 of the inner skirt 16. The folded lower edge portion 174 of the outer skirt 18 and the wrapped lower edge portion 50 of the inner skirt 16 can be secured together and/or secured to the frame 12. In the illustrated embodiment of FIGS. 30 and 31, the folded lower edge portion 174 of the outer skirt 18 and the wrapped lower edge portion 50 of the inner skirt 16 are secured only to the apices 22a of the frame 12 via sutures 74, with each suture extending through the lower edge portion 50, the lower edge portion 174 and around a respective apex 22a. These additional layers of material at the inflow end of the valve increase the material surface area at the inflow end of the valve.


In the illustrated embodiment, the lower edge portion 50 of the inner skirt 16 is shown extending over the lowermost row I of struts 22 along the outer surface of the frame. In other embodiments, the lower edge portion 50 can extend farther along the outer surface of the frame and can cover additional rows of struts 22, including rows II, III, or IV. Similarly, the folded lower edge portion 174 of the outer skirt 18 is shown extending axially over the lowermost row I of struts 22, but can extend farther along the outer surface of the frame and can cover additional rows of struts 22, including rows II, III, or IV.


In other embodiments, the folded lower edge portion 174 of the outer skirt 18 and the wrapped lower edge portion 50 of the inner skirt 16 can be secured to any other portion of the frame 12. In other embodiments, the folded lower edge portion 174 of the outer skirt 18 and the wrapped lower edge portion 50 of the inner skirt 16 can be secured to each other and/or to the frame 12 via adhesive or ultrasonic welding in addition to or in lieu of the sutures 74.


In the illustrated embodiment of FIGS. 30 and 31, the lower edge portion 174 of the outer skirt 18 and the lower edge portion 50 of the inner skirt 16 are loosely secured together at the inflow end portion 15 of the frame 12 and these two layers are secured to the frame only at the apices 22a. This loose connection between the skirt layers, along with the discrete (spaced apart) connections to the frame apices, allows antegrade blood to more easily flow into the space between the frame 12 and the outer skirt 18, exposing more of the layers of skirt material to blood, which can enhance the sealing properties, thereby reducing or eliminating perivalvular leakage.


In alternative embodiments, the lower edge portion 174 of the outer skirt 18 and the lower edge portion 50 of the inner skirt 16 can be tightly sutured or otherwise secured to each other along the entire circumference of both skirts. Also, one or both layers of the skirts 16, 18 can be tightly sutured to the frame 12 along the entire circumference of the frame 12 (e.g., to the lower rung of struts 22), rather than just to the apices 22a.



FIGS. 32-34 show another embodiment of an outer skirt 500. FIG. 32 shows a flattened view of the outer skirt 500 prior to its attachment to the prosthetic heart valve 10. FIGS. 33-34 show the outer skirt 500 in a folded configuration as discussed further below.


Referring to FIG. 32, the outer skirt 500 can comprise a first end portion 502 (i.e., the upper end portion as depicted in FIG. 32), a second end portion 504 (i.e., the lower end portion as depicted in FIG. 32), and an intermediate portion 506 disposed between the first and second end portions 502, 504. The first end portion 502 of the outer skirt 500 can include a plurality of alternating projections 508 and notches 510, or castellations. The second end portion 504 of the outer skirt 500 can comprise a plurality of overlapping portions 512 and can have a plurality of openings 514 paired with the overlapping portions. Each pair of an opening 514 and an overlapping portion 512 can be laterally spaced apart relative to each other and laterally aligned with the projections 508 of the first end portion 502 and laterally offset relative to the notches 510 of the first end portion 502. When placed around the stent, each overlapping portions 512 is radially aligned with a corresponding opening 514. The openings 514 can comprise various sizes and/or geometric shapes, including circular, ovular, rectangular, and/or combinations of shapes.


Referring to FIGS. 33 and 34, the overlapping portions 512 of the second end portion 504 can be folded upwards such that each overlapping portion 512 covers one of the openings 514. FIG. 33 shows a view of the outer skirt 500 where the overlapping portions 512 are folded behind the openings 514, as viewed from the outside of the skirt 500. FIG. 34 shows a view of the outer skirt 500 similar to FIG. 33, but as viewed from the inside of the skirt 500. In some embodiments, the outer skirt 500 of FIGS. 32-34 can be used in place of the outer skirt 18 in the exemplary embodiment of FIGS. 30-31. In such an embodiment, the overlapping portions 512 are folded inwards towards the frame 12 and are secured to the folded lower edge portion 50 of the inner skirt 16 with sutures 74.


The overlapping portions 512 can cover and seal the openings 514 from the inside of the outer skirt 500. In addition, the overlapping portions 512 provide an additional layer of material between the frame 12 and the rest of the outer skirt 500. These layers provide additional material surface area and the openings expose more of the material to blood, thus enhancing the sealing effect.


It should be noted that, in some embodiments, the outer skirts 200, 300, 500 can comprise creases similar to the creases 170, 402 of the outer skirt 18. The creases can be configured to facilitate uniform crimping and/or expansion and/or to reduce the crimped radial profile of a prosthetic heart valve in compressed delivery configuration. In some embodiments, the creases can be formed by ultrasonic welding.



FIGS. 35-37 and 40 show various implantation positions for a prosthetic heart valve 10, including implantation within a dock or anchor placed inside the patient's body prior to valve implantation. FIG. 35 shows the prosthetic heart valve 10 implanted in the native aortic valve of a patient.



FIG. 36 shows the prosthetic heart valve 10 implanted in the pulmonary artery of a patient for replacing or enhancing the function of a diseased pulmonary valve. Due to the variations in the size and shape of the native pulmonary valve and the pulmonary artery, the prosthetic valve 10 can be implanted within a radially expandable outer docking device 600. The docking device 600 can comprise a radially expandable and compressible annular stent 602 and a sealing member 604 that covers all or a portion of the stent and can extend across the inner surface and/or outer surface of the stent. The docking device 600 is configured to engage the inner wall of the pulmonary artery and can accommodate variations in patient anatomy. The docking device 600 also can compensate for the expanded prosthetic heart valve 10 being much smaller than vessel in which it is placed. The docking device 600 also can be used to support a prosthetic valve in other areas of the patient's anatomy, such as, the inferior vena cava, superior vena cava, or the aorta. Further details of the docking device 600 and methods for implanting the docking device and a prosthetic valve are disclosed, for example, in co-pending U.S. application Ser. No. 15/422,354, filed Feb. 1, 2017, which is incorporated herein by reference.



FIG. 37 shows the prosthetic heart valve 10 implanted in the native mitral valve of a patient using a docking device in the form of a helical anchor 700. The helical anchor 700 can include one or more coils 702 deployed in left atrium and one or more coils 704 deployed in the left ventricle and radially outside of the native mitral valve leaflets 706. When the prosthetic valve 10 is deployed within the native valve, the native leaflets are compressed or pinched between the prosthetic valve 10 and the anchor 700 to retain the prosthetic valve in place. Further details of the helical anchor 700 and methods for implanting the anchor and a prosthetic valve are disclosed, for example, in co-pending U.S. Application No. 62/395,940, filed Sep. 16, 2016, which is incorporated herein by reference.



FIGS. 38 and 39 show a docking device 800 for a prosthetic heart valve, according to another embodiment. The docking device 800 can include a radially expandable and compressible frame 802 having an outer portion 804, an inner portion 806 disposed coaxially within one end portion of the outer portion 804, and a curved transition portion 808 extending between and connecting the inner portion 806 and the outer portion 804. The docking device 800 can further include a sealing member 810 extending over the inner surface of the inner portion 806, a portion of the outer surface of the outer portion 804 adjacent the inner portion 806, and the transition portion 808.



FIG. 40 shows the docking device 800 implanted in a vessel 820, which can be, for example, the inferior vena cava, superior vena cava, or the ascending aorta. As shown, a prosthetic valve 10 can be deployed within the inner portion 806 of the docking device 800. Similar to the docking device 600, the docking device 800 can compensate for the expanded prosthetic heart valve 10 being much smaller than vessel in which it is placed. The docking device 800 is particularly suited for implanting a prosthetic valve in the inferior vena cava for replacing or enhancing the function of the native tricuspid valve. Further details of the docking device 800 and methods for implanting the docking device and a prosthetic valve are disclosed, for example, in co-pending U.S. application Ser. No. 16/034,794, filed Jul. 13, 2018, which is incorporated herein by reference.


GENERAL CONSIDERATIONS

It should be understood that the disclosed embodiments can be adapted to deliver and implant prosthetic devices in any of the native annuluses of the heart (e.g., the pulmonary, mitral, and tricuspid annuluses), and can be used with any of various approaches (e.g., retrograde, antegrade, transseptal, transventricular, transatrial, etc.). The disclosed embodiments can also be used to implant prostheses in other lumens of the body. Further, in addition to prosthetic valves, the delivery assembly embodiments described herein can be adapted to deliver and implant various other prosthetic devices such as stents and/or other prosthetic repair devices.


For purposes of this description, certain aspects, advantages, and novel features of the embodiments of this disclosure are described herein. The disclosed methods, apparatus, and systems should not be construed as being limiting in any way. Instead, the present disclosure is directed toward all novel and nonobvious features and aspects of the various disclosed embodiments, alone and in various combinations and sub-combinations with one another. The methods, apparatus, and systems are not limited to any specific aspect or feature or combination thereof, nor do the disclosed embodiments require that any one or more specific advantages be present or problems be solved. For example, an outer skirt for a prosthetic heart valve can include one or more features disclosed skirt 18, skirt 200, skirt 300, skirt 400, and/or skirt 500.


Although the operations of some of the disclosed embodiments are described in a particular, sequential order for convenient presentation, it should be understood that this manner of description encompasses rearrangement, unless a particular ordering is required by specific language set forth below. For example, operations described sequentially may in some cases be rearranged or performed concurrently. Moreover, for the sake of simplicity, the attached figures may not show the various ways in which the disclosed methods can be used in conjunction with other methods. Additionally, the description sometimes uses terms like “provide” or “achieve” to describe the disclosed methods. These terms are high-level abstractions of the actual operations that are performed. The actual operations that correspond to these terms may vary depending on the particular implementation and are readily discernible by one of ordinary skill in the art.


As used in this application and in the claims, the singular forms “a,” “an,” and “the” include the plural forms unless the context clearly dictates otherwise. Additionally, the term “includes” means “comprises.” Further, the terms “coupled” and “associated” generally mean electrically, electromagnetically, and/or physically (e.g., mechanically or chemically) coupled or linked and does not exclude the presence of intermediate elements between the coupled or associated items absent specific contrary language.


As used herein, the term “proximal” refers to a position, direction, or portion of a device that is closer to the user and further away from the implantation site. As used herein, the term “distal” refers to a position, direction, or portion of a device that is further away from the user and closer to the implantation site. Thus, for example, proximal motion of a device is motion of the device toward the user, while distal motion of the device is motion of the device away from the user. The terms “longitudinal” and “axial” refer to an axis extending in the proximal and distal directions, unless otherwise expressly defined.


As used herein, the terms “integrally formed” and “unitary construction” refer to a construction that does not include any welds, fasteners, or other means for securing separately formed pieces of material to each other.


As used herein, the term “coupled” generally means physically coupled or linked and does not exclude the presence of intermediate elements between the coupled items absent specific contrary language.


As used herein, operations that occur “simultaneously” or “concurrently” occur generally at the same time as one another, although delays in the occurrence of one operation relative to the other due to, for example, spacing, play or backlash between components in a mechanical linkage such as threads, gears, etc., are expressly within the scope of the above terms, absent specific contrary language.


In view of the many possible embodiments to which the principles of the disclosed invention may be applied, it should be recognized that the illustrated embodiments are only preferred examples of the invention and should not be taken as limiting the scope of the invention. Rather, the scope of the invention is defined by the following claims. We therefore claim as our invention all that comes within the scope and spirit of these claims.

Claims
  • 1. An implantable prosthetic valve comprising: an annular frame comprising an inflow end and an outflow end and being radially collapsible and expandable between a radially collapsed configuration and a radially expanded configuration;a leaflet structure positioned within the frame and secured thereto;an annular inner skirt positioned around an inner surface of the frame, wherein the inner skirt comprises an outflow edge portion secured to the frame and an inflow edge portion secured to the frame; andan outer skirt positioned around an outer surface of the frame, wherein the outer skirt comprises an outflow edge portion secured to the frame and an inflow edge portion that is secured to the inflow edge portion of the inner skirt, wherein the inner and outer skirts are configured such that when the prosthetic valve is implanted, antegrade blood can flow through a space between the inflow edge portion of the inner skirt and the inflow edge portion of the outer skirt, wherein the outer skirt comprises a plurality of openings spaced apart from one another and disposed adjacent to the inflow edge portion, wherein the inflow edge portion of the outer skirt comprises a plurality of overlapping portions that are angularly aligned with the openings, and wherein the overlapping portions are folded inwardly towards the outflow end of the frame such that each overlapping portion covers one of the openings.
  • 2. The prosthetic valve of claim 1, wherein the inflow edge portion of the inner skirt and the inflow edge portion of the outer skirt are loosely secured together at the inflow end of the frame.
  • 3. The prosthetic valve of claim 1, wherein the frame further comprises a plurality of struts forming a plurality of circumferentially spaced apices at the inflow end of the frame, and wherein the inflow edge portion of the inner skirt is secured to the frame only at the apices.
  • 4. The prosthetic valve of claim 3, wherein the inflow edge portion of the outer skirt is secured to the inflow edge portion of the inner skirt only at locations on the inflow edge portion of the inner skirt that are secured to the apices of the frame.
  • 5. The prosthetic valve of claim 1, wherein the inflow edge portion of the inner skirt and the inflow edge portion of the outer skirt are secured to the frame at discrete, spaced-apart locations around a circumference of the inflow end of the frame.
  • 6. The prosthetic valve of claim 1, wherein the outflow edge portion of the outer skirt comprises a plurality of alternating projections and notches and wherein the projections are secured to the frame and the notches are not secured to the frame.
  • 7. The prosthetic valve of claim 6, wherein the notches are circumferentially offset from the plurality of openings such that when the prosthetic valve is implanted, retrograde blood flow entering the outer skirt through the notches and antegrade blood flow entering the outer skirt through the plurality of openings cannot pass directly through the outer skirt.
  • 8. The prosthetic valve of claim 1, wherein the overlapping portions are secured to the inflow edge portion of the inner skirt on the outer surface of the frame.
  • 9. The prosthetic valve of claim 8, wherein the overlapping portions are secured to the inflow edge portion of the inner skirt only at locations on the inflow edge portion of the inner skirt that are secured to the frame.
  • 10. The prosthetic valve of claim 1, wherein the outer skirt is secured to the inner skirt by sutures that each extend through the inflow edge portion of the outer skirt and the inflow edge portion of the inner skirt and around a respective apex of the inflow end of the frame.
  • 11. The prosthetic valve of claim 1, wherein the outer skirt comprises a plurality of creases that are spaced apart around a circumference of the outer skirt, each crease of the plurality of creases extending axially from the inflow edge portion of the outer skirt toward the outflow edge portion of the outer skirt.
  • 12. An implantable prosthetic valve comprising: an annular frame comprising an inflow end and an outflow end and being radially collapsible and expandable between a radially collapsed configuration and a radially expanded configuration;a leaflet structure positioned within the frame and secured thereto;an annular inner skirt positioned around an inner surface of the frame, wherein the inner skirt comprises an outflow edge portion secured to the frame and an inflow edge portion secured to the frame; andan outer skirt positioned around an outer surface of the frame, wherein the outer skirt comprises an outflow edge portion secured to the frame and an inwardly folded inflow edge portion that extends circumferentially around the frame and is positioned radially outside of the frame, wherein the inflow edge portion of the outer skirt is secured to the frame at discrete, spaced-apart locations around the frame, on the outside of the frame, such that when the prosthetic valve is implanted, antegrade blood can enter a space between the inflow edge portion of the outer skirt and the outer surface of the frame at locations between the discrete, spaced-apart locations, and flow through the space between the inflow edge portion of the outer skirt and the outer surface of the frame.
  • 13. The prosthetic valve of claim 12, wherein the inflow edge portion of the inner skirt and the inflow edge portion of the outer skirt are secured together on the outer surface of the frame.
  • 14. The prosthetic valve of claim 12, wherein the frame further comprises a plurality of struts forming a plurality of circumferentially spaced apices at the inflow end of the frame, and wherein the inflow edge portion of the inner skirt is secured to the frame only at the apices.
  • 15. The prosthetic valve of claim 14, wherein the inflow edge portion of the outer skirt is secured to the inflow edge portion of the inner skirt only at locations on the inflow edge portion of the inner skirt that are secured to the apices of the frame.
  • 16. An assembly for implanting a prosthetic heart valve, comprising: a delivery apparatus comprising an elongate shaft; anda prosthetic heart valve, comprising: an annular frame comprising an inflow end and an outflow end and being radially collapsible and expandable between a radially collapsed configuration and a radially expanded configuration;a leaflet structure positioned within the frame and secured thereto;an annular inner skirt positioned around an inner surface of the frame, wherein the inner skirt comprises an outflow edge portion secured to the frame and an inflow edge portion that is secured to the frame on a radially outward facing surface of the frame, wherein the inflow edge portion of the inner skirt wraps around the inflow end of the frame and extends at least partially along the radially outward facing surface of the frame; andan outer skirt positioned around the radially outward facing surface of the frame, wherein the outer skirt comprises an outflow edge portion secured to the frame and an inwardly folded inflow edge portion that extends along an outer surface of the inflow edge portion of the inner skirt, wherein the inwardly folded inflow edge portion of the outer skirt is secured to the inflow edge portion of the inner skirt outside of the frame, wherein the inner and outer skirts are configured such that when the prosthetic valve is implanted, antegrade blood can flow through a space between the inflow edge portion of the inner skirt and the inflow edge portion of the outer skirt, and wherein the prosthetic heart valve is coupled to the shaft of the delivery apparatus.
  • 17. The assembly of claim 16, wherein the inflow edge portion of the inner skirt and the inflow edge portion of the outer skirt are secured to the frame at discrete, spaced-apart locations around a circumference of the inflow end of the frame.
CROSS REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. application Ser. No. 16/102,301, filed Aug. 13, 2018, which claims the benefit of U.S. Provisional Application Ser. No. 62/546,915, filed Aug. 17, 2017, which are incorporated by reference herein in their entireties.

US Referenced Citations (296)
Number Name Date Kind
3409013 Berry Nov 1968 A
3548417 Kisher Dec 1970 A
3587115 Shiley Jun 1971 A
3657744 Ersek Apr 1972 A
3671979 Moulopoulos Jun 1972 A
3714671 Edwards et al. Feb 1973 A
3755823 Hancock Sep 1973 A
4035849 Angell et al. Jul 1977 A
4056854 Boretos et al. Nov 1977 A
4106129 Carpentier et al. Aug 1978 A
4222126 Boretos et al. Sep 1980 A
4265694 Boretos et al. May 1981 A
4297749 Davis et al. Nov 1981 A
RE30912 Hancock Apr 1982 E
4339831 Johnson Jul 1982 A
4343048 Ross et al. Aug 1982 A
4345340 Rosen Aug 1982 A
4373216 Klawitter Feb 1983 A
4406022 Roy Sep 1983 A
4441216 Ionescu et al. Apr 1984 A
4470157 Love Sep 1984 A
4535483 Klawitter et al. Aug 1985 A
4574803 Storz Mar 1986 A
4592340 Boyles Jun 1986 A
4605407 Black et al. Aug 1986 A
4612011 Kautzky Sep 1986 A
4643732 Pietsch et al. Feb 1987 A
4655771 Wallsten Apr 1987 A
4692164 Dzemeshkevich et al. Sep 1987 A
4733665 Palmaz Mar 1988 A
4759758 Gabbay Jul 1988 A
4762128 Rosenbluth Aug 1988 A
4777951 Cribier et al. Oct 1988 A
4787899 Lazarus Nov 1988 A
4787901 Baykut Nov 1988 A
4796629 Grayzel Jan 1989 A
4820299 Philippe et al. Apr 1989 A
4829990 Thuroff et al. May 1989 A
4851001 Taheri Jul 1989 A
4856516 Hillstead Aug 1989 A
4878495 Grayzel Nov 1989 A
4878906 Lindemann et al. Nov 1989 A
4883458 Shiber Nov 1989 A
4922905 Strecker May 1990 A
4966604 Reiss Oct 1990 A
4979939 Shiber Dec 1990 A
4986830 Owens et al. Jan 1991 A
4994077 Dobben Feb 1991 A
5007896 Shiber Apr 1991 A
5026366 Leckrone Jun 1991 A
5032128 Alonso Jul 1991 A
5037434 Lane Aug 1991 A
5047041 Samuels Sep 1991 A
5059177 Towne et al. Oct 1991 A
5080668 Bolz et al. Jan 1992 A
5085635 Cragg Feb 1992 A
5089015 Ross Feb 1992 A
5152771 Sabbaghian et al. Oct 1992 A
5163953 Vince Nov 1992 A
5167628 Boyles Dec 1992 A
5192297 Hull Mar 1993 A
5266073 Wall Nov 1993 A
5282847 Trescony et al. Feb 1994 A
5295958 Shturman Mar 1994 A
5332402 Teitelbaum Jul 1994 A
5360444 Kusuhara Nov 1994 A
5370685 Stevens Dec 1994 A
5397351 Pavcnik et al. Mar 1995 A
5411055 Kane May 1995 A
5411552 Andersen et al. May 1995 A
5443446 Shturman Aug 1995 A
5480424 Cox Jan 1996 A
5500014 Quijano et al. Mar 1996 A
5545209 Roberts et al. Aug 1996 A
5545214 Stevens Aug 1996 A
5549665 Vesely et al. Aug 1996 A
5554185 Block et al. Sep 1996 A
5558644 Boyd et al. Sep 1996 A
5571175 Vanney et al. Nov 1996 A
5584803 Stevens et al. Dec 1996 A
5591185 Kilmer et al. Jan 1997 A
5591195 Taheri et al. Jan 1997 A
5607464 Trescony et al. Mar 1997 A
5609626 Quijano et al. Mar 1997 A
5628792 Lentell May 1997 A
5639274 Fischell et al. Jun 1997 A
5665115 Cragg Sep 1997 A
5716417 Girard et al. Feb 1998 A
5728068 Leone et al. Mar 1998 A
5749890 Shaknovich May 1998 A
5756476 Epstein et al. May 1998 A
5769812 Stevens et al. Jun 1998 A
5800508 Goicoechea et al. Sep 1998 A
5840081 Andersen et al. Nov 1998 A
5855597 Jayaraman Jan 1999 A
5855601 Bessler et al. Jan 1999 A
5855602 Angell Jan 1999 A
5925063 Khosravi Jul 1999 A
5957949 Leonhardt et al. Sep 1999 A
6027525 Suh et al. Feb 2000 A
6132473 Williams et al. Oct 2000 A
6168614 Andersen et al. Jan 2001 B1
6171335 Wheatley et al. Jan 2001 B1
6174327 Mertens et al. Jan 2001 B1
6210408 Chandrasekaran et al. Apr 2001 B1
6217585 Houser et al. Apr 2001 B1
6221091 Khosravi Apr 2001 B1
6231602 Carpentier et al. May 2001 B1
6245102 Jayaraman Jun 2001 B1
6299637 Shaolian et al. Oct 2001 B1
6302906 Goicoechea et al. Oct 2001 B1
6338740 Carpentier Jan 2002 B1
6350277 Kocur Feb 2002 B1
6352547 Brown et al. Mar 2002 B1
6425916 Garrison et al. Jul 2002 B1
6440764 Focht et al. Aug 2002 B1
6454799 Schreck Sep 2002 B1
6458153 Bailey et al. Oct 2002 B1
6461382 Cao Oct 2002 B1
6468660 Ogle et al. Oct 2002 B2
6482228 Norred Nov 2002 B1
6488704 Connelly et al. Dec 2002 B1
6527979 Constantz et al. Mar 2003 B2
6569196 Vesely May 2003 B1
6582462 Andersen et al. Jun 2003 B1
6605112 Moll et al. Aug 2003 B1
6652578 Bailey et al. Nov 2003 B2
6689123 Pinchasik Feb 2004 B2
6716244 Klaco Apr 2004 B2
6730118 Spenser et al. May 2004 B2
6733525 Yang et al. May 2004 B2
6767362 Schreck Jul 2004 B2
6769161 Brown et al. Aug 2004 B2
6783542 Eidenschink Aug 2004 B2
6830584 Seguin Dec 2004 B1
6878162 Bales et al. Apr 2005 B2
6893460 Spenser et al. May 2005 B2
6908481 Cribier Jun 2005 B2
6936067 Buchanan Aug 2005 B2
7018406 Seguin et al. Mar 2006 B2
7018408 Bailey et al. Mar 2006 B2
7096554 Austin et al. Aug 2006 B2
7225518 Eidenschink et al. Jun 2007 B2
7276078 Spenser et al. Oct 2007 B2
7276084 Yang et al. Oct 2007 B2
7316710 Cheng et al. Jan 2008 B1
7318278 Zhang et al. Jan 2008 B2
7374571 Pease et al. May 2008 B2
7393360 Spenser et al. Jul 2008 B2
7462191 Spenser et al. Dec 2008 B2
7510575 Spenser et al. Mar 2009 B2
7563280 Anderson et al. Jul 2009 B2
7585321 Cribier Sep 2009 B2
7618446 Andersen et al. Nov 2009 B2
7618447 Case et al. Nov 2009 B2
7655034 Mitchell et al. Feb 2010 B2
7785366 Maurer et al. Aug 2010 B2
7959665 Pienknagura Jun 2011 B2
7959672 Salahieh et al. Jun 2011 B2
7993394 Hariton et al. Aug 2011 B2
8029556 Rowe Oct 2011 B2
8075611 Millwee et al. Dec 2011 B2
8128686 Paul, Jr. et al. Mar 2012 B2
8167932 Bourang et al. May 2012 B2
8291570 Eidenschink et al. Oct 2012 B2
8348998 Pintor et al. Jan 2013 B2
8449606 Eliasen et al. May 2013 B2
8454685 Hariton et al. Jun 2013 B2
8652203 Quadri et al. Feb 2014 B2
8747463 Fogarty et al. Jun 2014 B2
9078781 Ryan et al. Jul 2015 B2
10232564 Pelled Mar 2019 B2
20010021872 Bailey et al. Sep 2001 A1
20020026094 Roth Feb 2002 A1
20020032481 Gabbay Mar 2002 A1
20020138135 Duerig et al. Sep 2002 A1
20020143390 Ishii Oct 2002 A1
20020173842 Buchanan Nov 2002 A1
20030014105 Cao Jan 2003 A1
20030050694 Yang et al. Mar 2003 A1
20030100939 Yodfat et al. May 2003 A1
20030158597 Quiachon et al. Aug 2003 A1
20030212454 Scott et al. Nov 2003 A1
20040024452 Kruse et al. Feb 2004 A1
20040039436 Spenser et al. Feb 2004 A1
20040078074 Anderson et al. Apr 2004 A1
20040186558 Pavcnik et al. Sep 2004 A1
20040186563 Lobbi Sep 2004 A1
20040186565 Schreck Sep 2004 A1
20040260389 Case et al. Dec 2004 A1
20050010285 Lambrecht et al. Jan 2005 A1
20050075725 Rowe Apr 2005 A1
20050075728 Nguyen et al. Apr 2005 A1
20050096736 Osse et al. May 2005 A1
20050096738 Cali et al. May 2005 A1
20050188525 Weber et al. Sep 2005 A1
20050203614 Forster et al. Sep 2005 A1
20050203617 Forster et al. Sep 2005 A1
20050234546 Nugent et al. Oct 2005 A1
20060004469 Sokel Jan 2006 A1
20060025857 Bergheim et al. Feb 2006 A1
20060058872 Salahieh et al. Mar 2006 A1
20060074484 Huber Apr 2006 A1
20060108090 Ederer et al. May 2006 A1
20060149350 Patel et al. Jul 2006 A1
20060183383 Asmus et al. Aug 2006 A1
20060229719 Marquez et al. Oct 2006 A1
20060259136 Nguyen et al. Nov 2006 A1
20060259137 Artof et al. Nov 2006 A1
20060287717 Rowe et al. Dec 2006 A1
20070005131 Taylor Jan 2007 A1
20070010876 Salahieh et al. Jan 2007 A1
20070010877 Salahieh et al. Jan 2007 A1
20070112422 Dehdashtian May 2007 A1
20070162102 Ryan et al. Jul 2007 A1
20070203503 Salahieh et al. Aug 2007 A1
20070203575 Forster et al. Aug 2007 A1
20070203576 Lee et al. Aug 2007 A1
20070208550 Cao et al. Sep 2007 A1
20070213813 Von Segesser et al. Sep 2007 A1
20070233228 Eberhardt et al. Oct 2007 A1
20070260305 Drews et al. Nov 2007 A1
20070265700 Eliasen et al. Nov 2007 A1
20080021546 Patz et al. Jan 2008 A1
20080114442 Mitchell et al. May 2008 A1
20080125853 Bailey et al. May 2008 A1
20080154355 Benichou Jun 2008 A1
20080183271 Frawley et al. Jul 2008 A1
20080208327 Rowe Aug 2008 A1
20080243245 Thambar et al. Oct 2008 A1
20080255660 Guyenot et al. Oct 2008 A1
20080275537 Limon Nov 2008 A1
20080294248 Yang et al. Nov 2008 A1
20090118826 Khaghani May 2009 A1
20090125118 Gong May 2009 A1
20090157175 Benichou Jun 2009 A1
20090276040 Rowe et al. Nov 2009 A1
20090281619 Le et al. Nov 2009 A1
20090287296 Manasse Nov 2009 A1
20090287299 Tabor et al. Nov 2009 A1
20090299452 Eidenschink et al. Dec 2009 A1
20090319037 Rowe et al. Dec 2009 A1
20100049313 Alon et al. Feb 2010 A1
20100082094 Quadri et al. Apr 2010 A1
20100168844 Toomes et al. Jul 2010 A1
20100185277 Braido et al. Jul 2010 A1
20100198347 Zakay et al. Aug 2010 A1
20100204781 Alkhatib Aug 2010 A1
20110004299 Essinger et al. Jan 2011 A1
20110015729 Jimenez et al. Jan 2011 A1
20110066224 White Mar 2011 A1
20110137397 Chau et al. Jun 2011 A1
20110218619 Benichou et al. Sep 2011 A1
20110319991 Hariton et al. Dec 2011 A1
20120089223 Nguyen et al. Apr 2012 A1
20120101571 Thambar et al. Apr 2012 A1
20120123529 Levi May 2012 A1
20120197391 Alkhatib Aug 2012 A1
20120259409 Nguyen et al. Oct 2012 A1
20130023985 Khairkhahan et al. Jan 2013 A1
20130046373 Cartledge et al. Feb 2013 A1
20130150956 Yohanan et al. Jun 2013 A1
20130166017 Cartledge et al. Jun 2013 A1
20130190857 Mitra et al. Jul 2013 A1
20130274873 Delaloye et al. Oct 2013 A1
20130310926 Hariton Nov 2013 A1
20130317598 Rowe et al. Nov 2013 A1
20130331929 Mitra et al. Dec 2013 A1
20140018915 Biadillah et al. Jan 2014 A1
20140194981 Menk et al. Jul 2014 A1
20140200661 Pintor et al. Jul 2014 A1
20140209238 Bonyuet et al. Jul 2014 A1
20140222136 Geist et al. Aug 2014 A1
20140277417 Schraut et al. Sep 2014 A1
20140277419 Garde et al. Sep 2014 A1
20140277424 Oslund Sep 2014 A1
20140277563 White Sep 2014 A1
20140296962 Cartledge et al. Oct 2014 A1
20140330372 Weston et al. Nov 2014 A1
20140343670 Bakis et al. Nov 2014 A1
20140343671 Yohanan et al. Nov 2014 A1
20140350667 Braido et al. Nov 2014 A1
20150073545 Braido Mar 2015 A1
20150073546 Braido Mar 2015 A1
20150135506 White May 2015 A1
20150157455 Hoang et al. Jun 2015 A1
20150164636 Valdez Jun 2015 A1
20150164640 McLean et al. Jun 2015 A1
20150305864 Quadri et al. Oct 2015 A1
20150320526 Marold Nov 2015 A1
20150320556 Levi Nov 2015 A1
20170014229 Nguyen-Thien-Nhon Jan 2017 A1
20180028310 Gurovich et al. Feb 2018 A1
20180153689 Maimon et al. Jun 2018 A1
20180325665 Gurovich et al. Nov 2018 A1
20180344456 Barash et al. Dec 2018 A1
Foreign Referenced Citations (74)
Number Date Country
0144167 Sep 1903 DE
2246526 Mar 1973 DE
19532846 Mar 1997 DE
19546692 Jun 1997 DE
19857887 Jul 2000 DE
19907646 Aug 2000 DE
10049812 Apr 2002 DE
10049813 Apr 2002 DE
10049814 Apr 2002 DE
10049815 Apr 2002 DE
0103546 Mar 1984 EP
0850607 Jul 1998 EP
1057460 Dec 2000 EP
1088529 Apr 2001 EP
1570809 Sep 2005 EP
2967863 Jan 2016 EP
2788217 Jul 2000 FR
2815844 May 2002 FR
2056023 Mar 1981 GB
1271508 Nov 1986 SU
9117720 Nov 1991 WO
9217118 Oct 1992 WO
9301768 Feb 1993 WO
9724080 Jul 1997 WO
9829057 Jul 1998 WO
9930646 Jun 1999 WO
9933414 Jul 1999 WO
0018333 Apr 2000 WO
0135878 May 2001 WO
0149213 Jul 2001 WO
0154624 Aug 2001 WO
0154625 Aug 2001 WO
0162189 Aug 2001 WO
0047139 Sep 2001 WO
0164137 Sep 2001 WO
0176510 Oct 2001 WO
0222054 Mar 2002 WO
0236048 May 2002 WO
0241789 May 2002 WO
0243620 Jun 2002 WO
0247575 Jun 2002 WO
0249540 Jun 2002 WO
03047468 Jun 2003 WO
2005034812 Apr 2005 WO
2005055883 Jun 2005 WO
2005084595 Sep 2005 WO
2006014233 Feb 2006 WO
2006032051 Mar 2006 WO
2006034008 Mar 2006 WO
2006111391 Oct 2006 WO
2006127089 Nov 2006 WO
2006138173 Dec 2006 WO
2005102015 Apr 2007 WO
2007047488 Apr 2007 WO
2007067942 Jun 2007 WO
2007097983 Aug 2007 WO
2008005405 Jan 2008 WO
2008015257 Feb 2008 WO
2008035337 Mar 2008 WO
2008091515 Jul 2008 WO
2008147964 Dec 2008 WO
2008150529 Dec 2008 WO
2009033469 Mar 2009 WO
2009042196 Apr 2009 WO
2009053497 Apr 2009 WO
2009061389 May 2009 WO
2009116041 Sep 2009 WO
2009149462 Dec 2009 WO
2010011699 Jan 2010 WO
2010121076 Oct 2010 WO
2013106585 Jul 2013 WO
2015085218 Jun 2015 WO
2015175302 Nov 2015 WO
2017101232 Jun 2017 WO
Non-Patent Literature Citations (9)
Entry
Al-Khaja, et al. “Eleven Years' Experience with Carpentier-Edwards Biological Valves in Relation to Survival and Complications,” European Journal of Cardiothoracic Surgery, vol. 3. pp. 305-311. 1989.
Bailey, S. “Percutaneous Expandable Prosthetic Valves,” Textbook of Interventional Cardiology vol. 2, 2nd Ed. pp. 1268-1276. 1994.
H.R. Andersen “History of Percutaneous Aortic Valve Prosthesis,” Herz No. 34. pp. 343-346. 2009.
H.R. Andersen, et al. “Transluminal Implantation of Artificial Heart Valve. Description of a New Expandable Aortic Valve and Initial Results with implantation by Catheter Technique in Closed Chest Pig,” European Heart Journal, No. 13. pp. 704-708. 1992.
Pavcnik, et al. “Development and initial Experimental Evaluation of a Prosthetic Aortic Valve for Transcatheter Placement,” Cardiovascular Radiology, vol. 183, No. 1. pp. 151-154. 1992.
Ross, “Aortic Valve Surgery,” At a meeting of the Council on Aug. 4, 1966. pp. 192-197.
Sabbah, et al. “Mechanical Factors in the Degeneration of Porcine Bioprosthetic Valves: An Overview,” Journal of Cardiac Surgery, vol. 4, No. 4. pp. 302-309. 1989.
Uchida, “Modifications of Gianturco Expandable Wire Stents,” American Journal of Roentgenology, vol. 150. pp. 1185-1187. 1986.
Wheatley, “Valve Prostheses,” Operative Surgery, 4th ed. pp. 415-424. 1986.
Related Publications (1)
Number Date Country
20210137675 A1 May 2021 US
Provisional Applications (1)
Number Date Country
62546915 Aug 2017 US
Continuations (1)
Number Date Country
Parent 16102301 Aug 2018 US
Child 17156345 US