Sealing sheath for prosthetic liner and related methods

Information

  • Patent Grant
  • 9168157
  • Patent Number
    9,168,157
  • Date Filed
    Thursday, March 14, 2013
    11 years ago
  • Date Issued
    Tuesday, October 27, 2015
    9 years ago
Abstract
The sealing sheath is for use with a prosthetic socket and associated liner. The sealing sheath includes a textile tube for surrounding at least a portion of a liner that is configured to wear on a residual limb. An annular seal, e.g. an elastomeric or silicone seal, is positioned adjacent a proximal end of the textile tube and continuously extends from an inside of the textile tube configured to be adjacent the liner, through the textile tube to an outside thereof configured to be adjacent an inside of the prosthetic socket. The annular seal may include a first wing on an inside of the textile tube configured to be adjacent the liner, a second wing on an outside of the textile tube configured to be adjacent an inside of the prosthetic socket, and a base connecting lower ends of the first and second wings to define a v-shaped cross-section of the annular seal.
Description
FIELD OF THE INVENTION

The present invention relates to the field of prosthetic and orthotic liners and/or sleeves (i.e. skin-socket interface liners and sleeves), and more particularly to custom and production (“off the shelf”) prosthetic liners, sleeves, and associated methods.


BACKGROUND OF THE INVENTION

Liners provide a soft, flexible interface between a residual limb of an amputee and a hard socket to which a prosthetic device is secured. Such liners are typically made of an elastomer material such as silicone. Such liners may also be used in connection with orthotic devices. Suspension sleeves are a flexible tube used to secure the prosthetic device to the patients limb. The sleeve may be a sealing sleeve, or a suspension sleeve. Both types start on the prosthetic device and finish on the patients limb. Supportive sleeves can be used in an orthotic device to support a joint or limb of a patient.


Prosthetic suspension liners are described in prior patents, and may be fabricated of elastomer or rubber materials, and are used to cushion a post-operative stump or residual limb with respect to a prosthesis that is installed over the residual limb and coupled to the liner, e.g. by a conventional locking device.


Such liners should conform closely with the residual limb, accommodate all surface contours and sub-surface bone elements of the residual limb, and provide a comfortable cushion between the residual limb and the hard socket of the prosthesis that is to be fitted over the residual limb. Various silicone rubber or elastomer materials are used for suspension liners. Such elastomer materials having an appropriate hardness/softness, elongation, tensile, and other properties, such as bio-inertness (resulting in no skin reaction), have been successfully used for suspension liners.


The elastomer forming the liner or sleeve frictionally engages and remains attached to the skin of a residual limb so that the limb is retained within the prosthetic socket in a comfortable, non-irritating manner. For example, liners may be used for any level of amputation both upper and lower limb.


When an amputee walks air inside the socket allows the socket to fall away from the amputee during swing phase (the time the prosthesis is in the air between steps) causing an accelerated impact of the residual limb and the bottom of the socket when the heel hits the floor. By removing the air in the socket the prosthesis is held closer to the residual limb during swing phase reducing the accelerated impact at heel strike. There are various ways to seal the proximal portion of the socket and the liner that covers the amputee's residual limb. The most common is the use of a sealing sleeve. The sealing sleeve is attached to the outside of the socket and extends up onto the amputee's limb usually sealing on the liner.


Problems with sealing sleeves include, but are not limited to, punctures, bunching behind the knee, restricted knee flexion, and tearing along the brim of the socket.


U.S. Pat. No. 7,025,793 to Egilsson is directed to a seal but it is attached directly to the liner, which does not allow for optimal placement of the seal. The design configuration may not allow for higher vacuum sockets. Another existing seal is disclosed in U.S. Pat. No. 7,144,429 to Carstens. The seal arrangement includes a cuff-like base with a sealing lip on an outside thereof. The lip has two flaps to seal on both the liner and inner socket wall but nothing to hold the base in place, which may allow for the possibility of migration of the seal proximally during donning of the liner, compromising the seal.


SUMMARY OF THE INVENTION

It is an object of the present invention to provide a more reliable seal for use with prosthetic sockets and associated liners.


This and other objects, advantages and features in accordance with the present invention are provided by a sealing sheath for use with a prosthetic socket and associated liner, the sealing sheath including a textile tube for surrounding at least a portion of a liner that is configured to wear on a residual limb. An annular seal, e.g. an elastomeric or silicone seal, is positioned adjacent a proximal end of the textile tube and continuously extends from an inside of the textile tube configured to be adjacent the liner, through the textile tube to an outside thereof configured to be adjacent an inside of the prosthetic socket.


The textile tube may include a closed distal end opposite the proximal end which is open. The textile tube may define a wicking layer for distributing vacuum within an area defined between the liner and the prosthetic socket and sealed by the annular seal.


The annular seal may comprise a first wing on an inside of the textile tube configured to be adjacent the liner, a second wing on an outside of the textile tube configured to be adjacent an inside of the prosthetic socket, and a base connecting lower ends of the first and second wings to define a v-shaped cross-section of the annular seal. The first wing may extend through the textile tube from the inside to the outside thereof. The base may extend through the textile tube from the inside to the outside thereof. The second wing may have a tapered width from the lower end to an upper end thereof.


Objects, advantages and features in accordance with the present invention are also provided by a method of making a sealing sheath for use with a prosthetic socket and associated liner, the method including providing a textile tube for surrounding at least a portion of a liner that is configured to wear on a residual limb, and forming an annular seal adjacent a proximal end of the textile tube and continuously extending from an inside of the textile tube configured to be adjacent the liner, through the textile tube to an outside thereof configured to be adjacent an inside of the prosthetic socket.


Forming the annular seal may comprise forming a first wing on an inside of the textile tube configured to be adjacent the liner, a second wing on an outside of the textile tube configured to be adjacent an inside of the prosthetic socket, and a base connecting lower ends of the first and second wings to define a v-shaped cross-section of the annular seal. The second wing may be formed with a tapered width from the lower end to an upper end thereof. Also, forming the annular seal may include the use of a mold having a body for holding the textile tube, and body portions corresponding to a shape of the annular seal. As such, forming the annular seal may further comprise providing silicone in the mold to fill the body portions and define the annular seal.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a cross-sectional view of a vacuum socket and liner, and a sealing sheath and seal in accordance with features of the present invention.



FIG. 2 is an enlarged view illustrating details of the sealing sheath and seal of FIG. 1 between the socket wall and liner.



FIG. 3 is a schematic diagram illustrating various steps in an embodiment of a method for making the sealing sheath of FIG. 1.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

The present invention will now be described more fully hereinafter with reference to the accompanying drawings in which preferred embodiments of the invention are shown. This invention may, however, be embodied in many different forms and should not be construed as limited to the embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art. Like numbers refer to like elements throughout and prime notations are used in alternate embodiments.


The following description refers to, by example, a liner associated with the knee, however, the features of the invention apply to liners and sleeves for use with any limb/joint area that may benefit from the use of a sealing sheath as described herein. Features of the present invention are directed to a sealing sheath for a prosthetic or orthotic liner or sleeve and associated methods of making and using. Dimensions of layers in the drawings may be exaggerated for ease of explanation.


Referring to FIGS. 1-2 below, the approach of the present invention will be described. As discussed above, a conventional sealing sleeve is normally worn on the outside of the socket and seals on the portion of the liner that extends out of the top of the socket. This approach leaves the sleeve exposed to the outside environment, and such exposure is the source of many of the problems associated with sleeves such as punctures, bunching behind the knee, restricted knee flexion, and tearing along the brim of the socket.


The sealing sheath 10 of the present invention is positioned on the inside of a socket 12 protecting it from the outside environment, and it is placed on a liner 14 at a position, e.g. chosen by the prosthetist by sealing, sewing or otherwise attaching the sheath 10 or textile or fabric tube at a specific distance from the bottom of the uncovered liner 14, to provide a sufficient sealing area or optimize the sealing area.


A first wing 22 of the v-shaped annular seal 20 is against the uncovered liner 14 and a second wing 24 is positioned against the inner socket wall 12. As a one-way expulsion valve 30 in the distal portion of the socket 12 (or any other evacuation approach) evacuates air, by either mechanical or electrical means, a vacuum is created beneath the level of the seal 20. The sheath 10 or fabric tube holds the seal 20 in the proper position on the uncovered liner 14 as the amputee inserts the limb into the socket 12. The higher the force of the vacuum the more securely the wings 22/24 of the seal are held against the liner 14 and inner socket wall 12.


Since the seal 20 is preferably positioned below the joint, e.g. knee, joint flexion is not inhibited and the there is no extra material around the joint to cause any bunching. Punctures and tearing are also reduced or eliminated because the seal is inside the socket, and the tearing that occurs from movement at the knee may also be reduced or eliminated.


As illustrated in the enlarged view of FIG. 2, the annular seal 20 may include a first wing 22 on an inside of the textile tube 10 configured to be adjacent an outer surface of the liner 14. A second wing 24 is on an outside of the textile tube 10 configured to be adjacent an inside surface of the prosthetic socket 12. A base 26 connects lower ends of the first 22 and second 24 wings to define a v-shaped cross-section of the annular seal 20. The first wing 22 may extend through the textile tube 10 from the inside to the outside thereof. The base 26 may extend through the textile tube 10 from the inside to the outside thereof. The first 22 and second 24 wings may have a tapered width from the lower end to an upper end thereof. Such a tapered seal design, i.e. from bottom to top making the upper edge thinner than the base 26, gives the seal 20 more flexibility, allowing the seal more mobility to allow for any forces during ambulation that would try to pull the seal away from both the liner 14 and inner socket wall 12. In the present invention, when vacuum is applied to the underside of the seal 20, the vacuum draws the wings 22/24 of the seal 20 tighter against the socket 12 and liner 14.


The seal 20 is connected, e.g. during molding or curing, to the sheath 10 or fabric tube that is separate from the liner 14. This arrangement allows for the sealing sheath 10 to be replaced, e.g. if damaged, at a lower cost than that of replacing an entire liner 14. Of course, if desired, the sheath 10 or portions thereof could be attached to the liner.


The seal 20 is preferably made of silicone or any other elastomer that provides an adequate seal, and protrudes, extends through or is otherwise formed on both sides of the sheath 10 or fabric tube to allow for a complete seal against the liner 14.


With reference to FIG. 3, the sealing sheath 10 may be made using a male 40 and female 46 mold. The male mold 40 is a cylinder with a small annular indent 42 corresponding to the portion of the seal 20 on the inner portion of the sealing sheath 10 (step A). A section of fabric 44 is pulled over the male mold 40 (step B). The female mold 46, e.g. having an annular indent 48 corresponding to the shape of the seal 20, is then placed over the male mold 40 and fabric 44 with indexing on the male mold so the main shape of the seal lines up with the indent 48 in the male mold 40 (step C). The combination of molds are then injected with the appropriate silicone. The fabric 44 will bridge the small annular indent 42 in the male mold 40 allowing for the silicone to pass through the fabric and ensuring a silicone layer on both sides of the fabric.


The sheath material 10 or fabric tube may also act as a vacuum wick below the seal 20 ensuring that the seal is held against the socket 12 and liner 14 tightly. Such a fabric tube 10 can also be sewn and trimmed to accommodate any residual limb length. By sewing the fabric tube 10, the clinician or amputee can place the seal at a preferable height on the liner 14 from the distal end thereof. The fabric tube 10 also stops the seal 20 from migrating proximally, or out the top of the socket 12. As discussed above, such migration could cause a loss in vacuum.


Many modifications and other embodiments of the invention will come to the mind of one skilled in the art having the benefit of the teachings presented in the foregoing descriptions and the associated drawings. Therefore, it is to be understood that the invention is not to be limited to the specific embodiments disclosed, and that modifications and embodiments are intended to be included within the scope of the appended claims.

Claims
  • 1. A method for making a prosthetic device, comprising the steps of: providing a fabric material;providing male and female molds;placing a section of the fabric material over the male mold;placing the female mold having an annular indent corresponding to a shape of a seal over the male mold and fabric material at a localized area along the fabric material between top and bottom portions of the fabric material;injecting an elastomeric material between the male and female molds at the localized area so as to allow for the elastomeric material to pass through and bridge the fabric to ensure the elastomeric material on both sides of the fabric material at least at the female mold annular indent such that fabric material without the elastomeric material border above and below the localized area.
  • 2. The method of claim 1, wherein the male mold includes an annular indent.
  • 3. The method of claim 2, further comprising the step of indexing the male mold annular indent to the female mold annular indent.
  • 4. The method of claim 3, further comprising the step of injecting the elastomeric material between the annular indents among the male and female molds.
  • 5. The method of claim 1, wherein the male mold is a cylinder having a closed end.
  • 6. The method of claim 5, wherein the female mold is a cylinder corresponding in shape to the male mold.
  • 7. The method of claim 1, wherein the fabric material is configured as a closed-ended tube and defines a wicking layer.
  • 8. The method of claim 1, wherein the elastomeric material is silicone.
  • 9. The method of claim 1, wherein the female mold annular indent defines cavities for forming first and second wings combining to form a v-shaped cross-section and extending outwardly from an outside surface of the fabric material.
  • 10. The method of claim 9, wherein the first wing extends upwardly beyond an upper end of the second wing.
  • 11. The method of claim 10, wherein the cavity for the second wing has a tapered width from a lower end to an upper end thereof.
  • 12. A method for making a prosthetic device, comprising the steps of: providing a fabric material defining a wicking layer;providing male and female molds, the male mold having an annular indent;placing a section of the fabric material over the male mold;placing the female mold having an annular indent corresponding to a shape of a seal over the male mold and fabric material;indexing the male mold annular indent to the female mold annular indent;injecting an elastomeric material between the male and female molds so as to allow for the elastomeric material to pass through and bridge the fabric to ensure the elastomeric material on both sides of the fabric material only at the female and male mold annular indents;forming an elastomeric annular seal from the injected elastomeric material only at the female mold annular indent and protruding from an outside surface of the fabric material adjacent the female mold and continuously extending from and along an inside surface of the fabric material adjacent to the male mold.
  • 13. The method of claim 12, wherein the male mold is a cylinder having a closed end and the fabric material is formed as a closed-ended tube adapted in shape to cover the male mold.
  • 14. The method of claim 13, wherein the female mold is a cylinder corresponding in shape to the male mold.
  • 15. The method of claim 12, wherein the elastomeric material is silicone.
  • 16. A method for making a prosthetic device, comprising the steps of: providing a fabric material;providing male and female molds;placing a section of the fabric material over the male mold;placing the female mold having an annular indent corresponding to a shape of a seal over the male mold and fabric material;injecting an elastomeric material between the male and female molds so as to allow for the elastomeric material to pass through and bridge the fabric to ensure the elastomeric material on both sides of the fabric material at least at the female mold annular indent;wherein the female mold annular indent defines cavities for forming first and second wings combining to form a v-shaped cross-section and extending outwardly from an outside surface of the fabric material.
  • 17. The method of claim 16, wherein the first wing extends upwardly beyond an upper end of the second wing.
  • 18. The method of claim 17, wherein the cavity for the second wing has a tapered width from a lower end to an upper end thereof.
US Referenced Citations (157)
Number Name Date Kind
980457 Toles Jan 1911 A
1389824 Abrams Nov 1921 A
1893853 Tullis Jan 1933 A
2325656 Brophy Aug 1943 A
2464443 Ganoe et al. Mar 1949 A
2530285 Catranis Nov 1950 A
2533404 Sharp et al. Dec 1950 A
2689351 Schindler Oct 1951 A
2634424 O'Gorman et al. Apr 1953 A
2671225 Schoene et al. Mar 1954 A
2808593 Andersen Oct 1957 A
3393407 Andel Jul 1968 A
3587572 Evans Jun 1971 A
3671980 Baird Jun 1972 A
3947897 Owens Apr 1976 A
4128903 Marsh et al. Dec 1978 A
4215679 Rustin Aug 1980 A
4319413 Mattil Mar 1982 A
4347204 Takagi et al. Aug 1982 A
4474573 Detty Oct 1984 A
4635626 Lerman Jan 1987 A
4738249 Linman et al. Apr 1988 A
4767735 Ewen et al. Aug 1988 A
4885828 Kozlowski Dec 1989 A
4908037 Ross Mar 1990 A
4923474 Klasson et al. May 1990 A
5007937 Fishman et al. Apr 1991 A
5055528 Kioka et al. Oct 1991 A
5122583 Ewen et al. Jun 1992 A
5139523 Paton et al. Aug 1992 A
5163965 Rasmusson et al. Nov 1992 A
5226918 Silagy et al. Jul 1993 A
5244716 Thornton et al. Sep 1993 A
5314496 Harris et al. May 1994 A
5376129 Raulkner et al. Dec 1994 A
5376131 Lenze et al. Dec 1994 A
5387245 Fay et al. Feb 1995 A
5549709 Caspers Aug 1996 A
5571208 Caspers Nov 1996 A
5571209 Brown, Sr. Nov 1996 A
5593454 Helmy Jan 1997 A
5658353 Layton Aug 1997 A
5702489 Slemker Dec 1997 A
5718925 Kristinsson et al. Feb 1998 A
5728168 Laghi et al. Mar 1998 A
5728170 Becker et al. Mar 1998 A
5735906 Caspers Apr 1998 A
5830237 Kania Nov 1998 A
5885674 Maemoto et al. Mar 1999 A
5888216 Haberman Mar 1999 A
5888230 Helmy Mar 1999 A
5904722 Caspers May 1999 A
5931872 Lohmann Aug 1999 A
5972036 Kristinsson et al. Oct 1999 A
5980577 Radis et al. Nov 1999 A
6076284 Terlizzi Jun 2000 A
6136039 Kristinsson et al. Oct 2000 A
6149691 Fay et al. Nov 2000 A
6171431 Gallagher, Jr. et al. Jan 2001 B1
6231616 Helmy May 2001 B1
6231617 Fay May 2001 B1
6273918 Yuhasz et al. Aug 2001 B1
6287345 Slemker et al. Sep 2001 B1
6361568 Hoerner Mar 2002 B1
6368357 Schon et al. Apr 2002 B1
6406499 Kania Jun 2002 B1
6468938 Govoni et al. Oct 2002 B1
6485776 Janusson et al. Nov 2002 B2
6508842 Caspers Jan 2003 B1
6544292 Laghi Apr 2003 B1
6554868 Caspers Apr 2003 B1
6585774 Dean, Jr. et al. Jul 2003 B2
6626952 Janusson et al. Sep 2003 B2
6645253 Caspers Nov 2003 B2
6706364 Janusson et al. Mar 2004 B2
6726726 Caspers Apr 2004 B2
6761742 Caspers Jul 2004 B2
6852269 Eberle et al. Feb 2005 B2
6926742 Caspers et al. Aug 2005 B2
6964688 Kania Nov 2005 B1
7001563 Janusson et al. Feb 2006 B2
7025793 Egilsson Apr 2006 B2
7118602 Bjarnason Oct 2006 B2
7144429 Carstens Dec 2006 B2
7169188 Carstens Jan 2007 B2
7169189 Bjarnason et al. Jan 2007 B2
7235108 Carstens Jun 2007 B2
7291182 Kania Nov 2007 B1
7351264 Wilson Apr 2008 B2
7427297 Patterson et al. Sep 2008 B2
7592286 Morini et al. Sep 2009 B2
7749281 Egilsson Jul 2010 B2
7771487 Mantelmacher Aug 2010 B2
8034120 Egilsson et al. Oct 2011 B2
8097043 Egilsson Jan 2012 B2
8372159 Mackenzie Feb 2013 B2
20010005798 Caspers Jun 2001 A1
20010016781 Caspers Aug 2001 A1
20020040248 Karason Apr 2002 A1
20020087215 Caspers Jul 2002 A1
20020091449 Caspers et al. Jul 2002 A1
20020099450 Dean, Jr. et al. Jul 2002 A1
20020165619 Hellberg Nov 2002 A1
20020183859 Houser Dec 2002 A1
20030181989 Eberle et al. Sep 2003 A1
20030191539 Caspers Oct 2003 A1
20040024322 Caspers Feb 2004 A1
20040030411 Caspers Feb 2004 A1
20040098136 Caspers May 2004 A1
20040122528 Egilsson Jun 2004 A1
20040143345 Caspers Jul 2004 A1
20040167638 Caspers Aug 2004 A1
20040181290 Caspers Sep 2004 A1
20040236434 Carstens Nov 2004 A1
20040243251 Carstens Dec 2004 A1
20040243252 Carstens Dec 2004 A1
20050101693 Arbogast et al. May 2005 A1
20050216095 Egilsson Sep 2005 A1
20050240282 Rush et al. Oct 2005 A1
20050240283 Kania Oct 2005 A1
20050267598 Bjarnason et al. Dec 2005 A1
20050267599 Bjarnason Dec 2005 A1
20060212128 Nachbar Sep 2006 A1
20070005149 Egilsson et al. Jan 2007 A1
20070021295 Morini et al. Jan 2007 A1
20070027556 Wilson Feb 2007 A1
20070043450 Pickering et al. Feb 2007 A1
20070061017 Wilson Mar 2007 A1
20070123998 Egilsson et al. May 2007 A1
20070179606 Huyghe et al. Aug 2007 A1
20080147202 Danzig et al. Jun 2008 A1
20080188949 MacKenzie Aug 2008 A1
20080221705 Scussel Sep 2008 A1
20080221706 Scussel et al. Sep 2008 A1
20080269914 Coppens et al. Oct 2008 A1
20090036999 Egilsson et al. Feb 2009 A1
20090069171 Sagae Mar 2009 A1
20090157196 Danzig et al. Jun 2009 A1
20090182435 Haberman Jul 2009 A1
20090198346 Perkins et al. Aug 2009 A1
20090240344 Colvin et al. Sep 2009 A1
20090306791 Slemker et al. Dec 2009 A1
20100070051 Carstens Mar 2010 A1
20100185300 Mackenzie Jul 2010 A1
20100249950 Bielefeld Sep 2010 A1
20100274364 Pacanowsky et al. Oct 2010 A1
20100318196 Egilsson Dec 2010 A1
20110029096 Laghi Feb 2011 A1
20110035027 McCarthy Feb 2011 A1
20110054635 Watts Mar 2011 A1
20110071649 McKinney Mar 2011 A1
20110077748 Egilsson et al. Mar 2011 A1
20110118854 Halldorsson May 2011 A1
20120041568 Mackenzie Feb 2012 A1
20130053982 Halldorsson Feb 2013 A1
20130138224 Mackenzie May 2013 A1
20130197670 Mackenzie Aug 2013 A1
Foreign Referenced Citations (46)
Number Date Country
369978 Feb 1983 AT
484363 Oct 1929 DE
745 981 May 1944 DE
813190 Sep 1951 DE
1795809 Sep 1959 DE
2060239 Jun 1972 DE
2127269 Dec 1972 DE
2540138 Mar 1977 DE
2544446 Apr 1977 DE
3221920 Apr 1983 DE
3508919 Nov 1989 DE
9419208 Nov 1994 DE
0 631 765 Sep 1998 EP
2420335 Oct 1979 FR
2539616 Jul 1984 FR
2 828 093 Aug 2001 FR
267988 Sep 1925 GB
263377 Dec 1926 GB
826041 Dec 1959 GB
2069847 Sep 1981 GB
2087727 Jun 1982 GB
H0623406 Feb 1994 JP
H07109314 Apr 1995 JP
07155343 Jun 1995 JP
H09104714 Apr 1997 JP
2637076 Aug 1997 JP
2740503 Apr 1998 JP
H10182740 Jul 1998 JP
2001055413 Feb 2001 JP
2002500697 Jan 2002 JP
2006176565 Jul 2006 JP
2006316160 Nov 2006 JP
2006528271 Dec 2006 JP
3984304 Oct 2007 JP
WO 9734548 Sep 1997 WO
0074611 Dec 2000 WO
0154631 Aug 2001 WO
0167842 Sep 2001 WO
WO 0226158 Apr 2002 WO
03024367 Mar 2003 WO
03024370 Mar 2003 WO
03039398 May 2003 WO
03099173 Dec 2003 WO
2004060136 Jul 2004 WO
2010085336 Jul 2010 WO
2013005735 Jan 2013 WO
Non-Patent Literature Citations (14)
Entry
Extended European Search Report from EP Application No. 14161004.8, May 22, 2014, 6 pages.
Search Report Regarding, “Silicone-Only Suspension (SOS) with Socket-Loc and the Ring for the Lower Limb”, found at http://www.oandp.org/jpo/library/1995—01—002.asp. Journal of Prosthetics and Orthotics 1995; vol. 7, No. 1, p. 2.
International Search Report and Written Opinion Issued in PCT/US2012/051645, Dec. 3, 2012.
Iceross® Confort® Locking/Cushion product information brochure, Mar. 27, 2009, 3 pages.
Iceross® Dermo, product information sheets from Internet, http/www.ossur.com/prosthetics/liners/dermo, Mar. 27, 2009, 2 sheets.
Military inStep: Prosthetic Socks and Liners, product information sheets from Internet, http/www.annputee-coalition.org/military-instep/prosthetic-socks, Mar. 27, 2009, 3 pages.
Prosthetic & Orthotic Update NewsLetter, No. 32, Internet Search conducted Mar. 27, 2009, 4 pages.
Walopur® Platilon@U, Product Information Brochure of Epurex Films GmbH & Co., KG, Internet Search result conducted Mar. 27, 2009, 2 pages.
Supplementary EP Search Report from EP Application No. 07837275.2, Feb. 19, 2014, 6 pages.
EP 03 78 9861—Supplementary European Search Report.
ESP Opti-Seal, Product Installation Instructions, http://www.wearesp.com, Downloaded Dec. 12, 2014, 1 page.
ESP Opti-Seal, “The Most Versatile Suspension System Availiable”, www.wearesp.com, Downloaded Dec. 12, 2014, 2 pages.
ESP Secure-Ring System (SRS), http://www.wearesp.com, Downloaded Dec. 12, 2014, 1 page.
ESP Secure-Ring System (SRS), Product Instructions Sheet, http://www.wearesp.com, downloaded Dec. 12, 2014, 2 pages.
Related Publications (1)
Number Date Country
20130197670 A1 Aug 2013 US
Provisional Applications (1)
Number Date Country
61205512 Jan 2009 US
Continuations (2)
Number Date Country
Parent 13748891 Jan 2013 US
Child 13826748 US
Parent 12657468 Jan 2010 US
Child 13748891 US