This application claims priority to and the benefit of the filing date of IN Patent Application Serial No. 2017/41043076, filed Nov. 30, 2017, which is hereby incorporated by reference and is assigned to the assignee of the present application.
The field of the disclosure relates generally to rotary machines, and more particularly to a sealing system for a rotary machine.
At least some known rotary machines include a compressor, a combustor coupled downstream from the compressor, a turbine coupled downstream from the combustor, and a rotor shaft rotatably coupled between the compressor and the turbine. Some known compressors include at least one rotor disk coupled to the rotor shaft, and a plurality of circumferentially-spaced rotary components (e.g. compressor blades, axial spacers) that extend outward from each rotor disk to define a stage of the compressor. At least some known rotary components include a platform, a shank that extends radially inward from the platform, and a dovetail region that extends radially inward from the shank to facilitate coupling the rotary component to the rotor disk.
In some machines, a clearance gap is defined between laterally-adjacent platforms of rotary components in a stage to enable assembly of the row of rotary components and to account for dimensional changes of the rotary components during operation of the compressor. However, the efficiency of at least some compressors may be limited, at least partially as a result of the clearance between adjacent rotary components, by working fluid leakage to and from the main flow path in the front stages of a compressor of a rotary machine. As such, at least some known rotary component designs are modified to reduce the clearance between platforms of laterally-adjacent rotary components. However, at least some of such known modifications to the rotary component designs may inhibit assembly of a stage of rotary components and/or may have limited effectiveness in reducing flow path leakage between laterally-adjacent rotary components.
In one aspect, a sealing system for a rotary machine is provided. The sealing system includes a pair of circumferentially-adjacent rotary components and an axial seal. Each of the rotary components includes a platform including a first side channel and an opposite second side channel, a shank extending radially inwardly from the platform, and a dovetail region extending radially inwardly from the shank. The axial seal is sized and shaped to be received in, and sealingly interface with, the first side channel of a first of the rotary components and the second side channel of a second of the rotary components.
In another aspect, a rotor assembly for a rotary machine is provided. The rotor assembly includes a row of rotary components spaced circumferentially about a rotor disk and a plurality of axial seals. Each rotary component includes a platform including a first side channel and an opposite second side channel, a shank extending radially inwardly from the platform, and a dovetail region extending radially inwardly from the shank. Each of the axial seals is sized and shaped to be received in, and sealingly interface with, the first side channel of one of the rotary components and the second side channel of an adjacent one of the rotary components.
In yet another aspect, a method of assembling a rotor assembly is provided. The method includes coupling a plurality of rotary components in a circumferentially extending row of rotary components. Each rotary component includes a platform including a first side channel and an opposite second side channel, a shank extending radially inwardly from the platform, and a dovetail region extending radially inwardly from the shank. The method also includes receiving each of a plurality of axial seals within the first side channel of one of the rotary components and the second side channel of an adjacent one of the rotary components in the row, each of the axial seals sized and shaped to sealingly interface with the first and second side channels.
The embodiments described herein overcome at least some of the disadvantages of known rotary components. The embodiments include a rotary component platform including a first side channel and an opposite second side channel. The first and second side channels of circumferentially-adjacent rotary components cooperate to receive, and sealingly interface with, an axially-extending seal to facilitate reducing working fluid leakage between the adjacent rotary components. In at least some embodiments, working fluid leakage reduction is achieved without modifying the existing rotor disk and/or rows of axially-adjacent rotary components, such as rotor blades. Alternatively, a portion of a downstream rotary component platform is modified to facilitate retaining the axial seal within the rotary component side channels. Additionally or alternatively, in certain embodiments, the rotary component includes a channel restriction coupled to a downstream face of the rotary component to facilitate retaining the axial seals within the side channels.
Unless otherwise indicated, approximating language, such as “generally,” “substantially,” and “about,” as used herein indicates that the term so modified may apply to only an approximate degree, as would be recognized by one of ordinary skill in the art, rather than to an absolute or perfect degree. Accordingly, a value modified by a term or terms such as “about,” “approximately,” and “substantially” is not to be limited to the precise value specified. In at least some instances, the approximating language may correspond to the precision of an instrument for measuring the value. Additionally, unless otherwise indicated, the terms “first,” “second,” etc. are used herein merely as labels, and are not intended to impose ordinal, positional, or hierarchical requirements on the items to which these terms refer. Moreover, reference to, for example, a “second” item does not require or preclude the existence of, for example, a “first” or lower-numbered item or a “third” or higher-numbered item. As used herein, the term “upstream” refers to a forward or inlet end of a rotary machine, and the term “downstream” refers to an downstream or exhaust end of the rotary machine.
In the exemplary embodiment, blades 204 in each row 214 are spaced circumferentially about, and extend radially outward from, a rotor disk 206. Each rotor disk 206 is coupled to rotor shaft 112 (shown in
A casing 210 extends circumferentially about rotor assembly 118 and stator vanes 202. Stator vanes 202 are each coupled to turbine casing 210 and extend radially inward from casing 210 towards rotor shaft 112. A working fluid path 216 is defined radially inward of casing 210, and radially outward rotor disks 206 and axial spacers 203. Each row 212 of blades 204 and each row 212 of stator vanes 202 extends at least partially through working fluid path 216, such that each row 213 of axial spacers 203 forms at least a portion of a radially inner boundary of working fluid path 216.
With reference to
With reference to
In the exemplary embodiment, platform 301 at least partially defines a radially inner boundary of working fluid path 216. Platform 301 includes a radially outer face 314 that is suitably shaped to facilitate flow of a working fluid through working fluid path 216. Additionally, in the exemplary embodiment, platform 301 includes an upstream face 306, an opposite downstream face 308, a first side face 310, and an opposite second side face 312. Downstream face 308 and upstream face 306 each extend radially outwardly from shank 302 and laterally-between first side face 310 and second side face 312. First side face 310 defines a first side channel 316 that extends axially upstream from downstream face 308 along first side face 310, and second side face 312 defines an opposite second side channel 318 (shown in
In the exemplary embodiment, first side channel 316 is sized and shaped substantially similarly to second side channel 318. In alternative embodiments, first side channel 316 is shaped differently from second side channel 318. In the exemplary embodiment, first side channel 316 extends an axial distance 320 axially upstream along first side face 310 from an intersection with downstream face 308. Second side channel 318 also extends axial distance 320 axially upstream along second side face 312 from an intersection with downstream face 308. Each of first side channel 316 and second side channel 318 is contoured to substantially follow a profile of outer face 314. A radially upper wall 339 of first side channel 316 is spaced a radial distance 338 from outer face 314. In the exemplary embodiment, distance 338 varies along first side face 310. Similarly, a radially upper wall (not shown) of second side channel 318 is spaced a radial distance from outer face 314 and the distance varies along first side face 310. In alternative embodiments, each of first side channel 316 and second side channel 318 is spaced from outer face 314 in any suitable fashion that enables rotary component 201 to function as described herein.
Each of first side channel 316 and second side channel 318 is defined by a depth 332, a width 322, and axial length 320. In the exemplary embodiment, each first side channel 316 and second side channel 318 extends axially upstream towards, but does not reach or intersect with, upstream face 306. In alternative embodiments, each first side channel 316 and second side channel 318 extends axially upstream, such that each intersects with upstream face 306. In other alternative embodiments, each first side channel 316 and second side channel 318 may have any other suitable shape and size that enables rotary component 201 to function as described herein.
More specifically, in the exemplary embodiment, second side edge 406 of axial seal 205 is inserted into, and sealingly interfaces with, first side channel 316 of a first rotary component 201, and first side edge 404 of axial seal 205 is inserted into, and sealingly interfaces with, second side channel 318 of an adjacent second rotary component 201. In the exemplary embodiment, seal axial length 416 is approximately equal to axial length 320 of channels 316 and 318 to facilitate retaining a portion of each axial seal 205 within a pair of recessed channels 316 and 318 defined in adjacent axial spacers 203. More specifically, when axial seals 205 are inserted into channels 316 and 318, seal downstream end 402 does not extend downstream past downstream face 308 (shown in
In the exemplary embodiment, axial seal 205 is formed from a single, continuous, substantially rigid piece of material. In alternative embodiments, axial seal 205 is formed from a material having a predetermined flexibility. In other alternative embodiments, axial seal 205 is formed from multiple portions coupled together. In further alternative embodiments, axial seal 205 may have any other shape, be fabricated from any other material, have any other construction, and/or may include any number of portions (including one) that enables axial seal 205 to function as described herein.
Additionally or alternatively, each axial seal 205 is retained within side channels 316 and 318 of circumferentially-adjacent rotary components 201 at least partially by wires staked at each end of side channels 316 and 318. Additionally or alternatively, each axial seal 205 is bent at a respective end to facilitate retaining each axial seal 205 within side channels 316 and 318 of circumferentially-adjacent rotary components 201. Additionally or alternatively, each axial seal 205 extends downstream into an axially-adjacent downstream component to facilitate retaining each axial seal 205 within side channels 316 and 318 of circumferentially-adjacent rotary components 201.
In the exemplary embodiment, channel restriction 354 extends circumferentially at least partially across a downstream end of first side channel 316, such that channel restriction 354 inhibits downstream end 402 of axial seal 205 from moving downstream out of first side channel 316 and second side channel 318. In alternative embodiments (not shown), channel restriction 354 extends circumferentially at least partially across the downstream end of second side channel 318. In some embodiments, channel restriction 354 extending across the downstream end of solely one of first side channel 316 and second side channel 318 facilitates routine movement of axial seal 205 relative to adjacent rotary components 201, while reducing or eliminating binding of axial seal 205 during operation of rotary machine 100, thereby facilitating a reduced fatigue of rotary components 201 and axial seals 205. In alternative embodiments (not shown), channel restriction 354 extends circumferentially across at least a portion of the downstream ends of both first side channel 316 and second side channel 318.
In the exemplary embodiment, channel restriction 354 is generally block-shaped. In alternative embodiments, channel restriction 354 has any suitable shape that enables channel restriction 354 to function as described herein. In the exemplary embodiment, channel restriction 354 is received in a complementary-shaped recess 370 defined in downstream face 308 of platform 301 of the first of the circumferentially-adjacent rotary components 201, such that channel restriction 354 is flush with downstream face 308. Moreover, recess 370 is defined adjacent first side face 310, such that channel restriction 354 received therein extends circumferentially at least partially across the downstream end of first side channel 316. In alternative embodiments (not shown), recess 370 is additionally or alternatively defined in a downstream face 308 of platform 301 of the circumferentially-adjacent second axial spacer 203, adjacent to second side face 312, such that channel restriction 354 received therein extends circumferentially across the downstream end of second side channel 318, as described above. In alternative embodiments, recess 370 is not defined in downstream face 308 and/or channel restriction 354 is not flush with downstream face 308.
In the exemplary embodiment, channel restriction 354 is coupled to rotary component 201 via at least one retention pin 352 inserted through a corresponding at least one opening 350 defined through channel restriction 354, and into a corresponding aligned at least one opening 372 defined in rotary component 201. In alternative embodiments, channel restriction 354 is coupled to rotary component 201 in any suitable fashion that enables channel restriction 354 to function as described herein.
In alternative embodiments, channel restriction 354 is implemented in any suitable fashion, for example, using a staking wire. In alternative embodiments, channel restriction 354 is not included.
The above-described embodiments of rotary components, axial seals, and axial seal retention apparatus overcome at least some disadvantages of known rotary components. Specifically, a rotary component includes a first side channel and a second side channel, and each channel is sized to receive an axial seal that is oriented to interface with adjacent channels defined in each adjacent rotary component to facilitate reducing working fluid leakage therethrough. In at least some embodiments, working fluid leakage reduction is achieved with the existing rotor disk and/or existing axially-adjacent components of the rotor. Thus, in some embodiments, the other components of a selected compressor design need not be modified to accommodate embodiments of the rotary components described herein.
Exemplary embodiments of a rotary component apparatus for use in a gas turbine engine are described above in detail. The apparatus are not limited to the specific embodiments described herein, but rather, components of systems may be utilized independently and separately from other components described herein. For example, the apparatus may also be used in combination with other rotary machines and methods, and are not limited to practice with only the gas turbine engine assembly as described herein. Rather, the exemplary embodiment can be implemented and utilized in connection with many other rotary machine applications.
Although specific features of various embodiments of the invention may be shown in some drawings and not in others, this is for convenience only. Moreover, references to “one embodiment” in the above description are not intended to be interpreted as excluding the existence of additional embodiments that also incorporate the recited features. In accordance with the principles of the invention, any feature of a drawing may be referenced and/or claimed in combination with any feature of any other drawing.
This written description uses examples to disclose the invention, including the best mode, and also to enable any person skilled in the art to practice the invention, including making and using any devices or systems and performing any incorporated methods. The patentable scope of the invention is defined by the claims, and may include other examples that occur to those skilled in the art. Such other examples are intended to be within the scope of the claims if they have structural elements that do not differ from the literal language of the claims, or if they include equivalent structural elements with insubstantial differences from the literal languages of the claims.
Number | Date | Country | Kind |
---|---|---|---|
2017/41043076 | Nov 2017 | IN | national |
Number | Name | Date | Kind |
---|---|---|---|
2755063 | Wilkinson | Jul 1956 | A |
4189282 | Benoist | Feb 1980 | A |
4524980 | Lillibridge | Jun 1985 | A |
4919590 | Stratford et al. | Apr 1990 | A |
5167485 | Starkweather | Dec 1992 | A |
5211407 | Glynn et al. | May 1993 | A |
5513955 | Barcza | May 1996 | A |
5707207 | Benoist | Jan 1998 | A |
5735671 | Brauer | Apr 1998 | A |
5957658 | Kasprow et al. | Sep 1999 | A |
6273683 | Zagar | Aug 2001 | B1 |
6315298 | Kildea | Nov 2001 | B1 |
6340285 | Gonyou | Jan 2002 | B1 |
6398499 | Simonetti et al. | Jun 2002 | B1 |
6561764 | Tiemann | May 2003 | B1 |
6883807 | Smed | Apr 2005 | B2 |
7052240 | Race et al. | May 2006 | B2 |
7407370 | Bracken et al. | Aug 2008 | B2 |
8002286 | El-Aini | Aug 2011 | B1 |
8182208 | Bridges, Jr. | May 2012 | B2 |
8602737 | Garcia-Crespo | Dec 2013 | B2 |
8684695 | Walunj et al. | Apr 2014 | B2 |
9840931 | Joshi | Dec 2017 | B2 |
9845690 | Giametta | Dec 2017 | B1 |
20020090296 | Kuwabara | Jul 2002 | A1 |
20070025837 | Pezzetti, Jr. | Feb 2007 | A1 |
20090092485 | Bridges, Jr. | Apr 2009 | A1 |
20090169369 | Morgan | Jul 2009 | A1 |
20100129226 | Strohl | May 2010 | A1 |
20100272559 | Propheter-Hinckley | Oct 2010 | A1 |
20110014050 | Lake | Jan 2011 | A1 |
20120189424 | Propheter-Hinckley | Jul 2012 | A1 |
20120219405 | Szwedowicz | Aug 2012 | A1 |
20140030100 | Joshi | Jan 2014 | A1 |
20150001815 | Steiger | Jan 2015 | A1 |
20150125304 | Rapp | May 2015 | A1 |
20150361814 | Bluck | Dec 2015 | A1 |
20160017716 | Haggmark | Jan 2016 | A1 |
20160281521 | Clum | Sep 2016 | A1 |
20160298480 | Bluck | Oct 2016 | A1 |
20170022839 | Lewis | Jan 2017 | A1 |
20170350263 | Giametta | Dec 2017 | A1 |
20180149025 | Thistle | May 2018 | A1 |
20180187558 | Thistle | Jul 2018 | A1 |
20180187559 | Thistle | Jul 2018 | A1 |
20180187562 | Thistle | Jul 2018 | A1 |
20180195401 | Sippel | Jul 2018 | A1 |
20180274381 | Dooley | Sep 2018 | A1 |
20180283193 | Walker | Oct 2018 | A1 |
20190162073 | Tyagi | May 2019 | A1 |
Number | Date | Country | |
---|---|---|---|
20190162073 A1 | May 2019 | US |