The present disclosure relates to the field of reflective displays, and more particularly to a seam for visually suppressing a gap between two adjacent reflective surfaces.
Commercial airlines are highly regulated to ensure public's security. One aspect of the security measures requires regular training and evaluation of the pilots. Pilots are trained in a controlled environment called a flight simulator.
Flight simulators recreate the cockpit and overall environment experience in which the pilots fly aircrafts. Flight simulators recreate the look and feel of the instruments in the cockpit, the out-of window view available before, during and after a flight, as well as the movements of the aircraft felt in the cockpit.
One of the numerous challenges when building a flight simulator lies in providing a realistic out-of-window view. Many factors concur for creating a realistic out-of window view. A first criteria is related to the field of view provided to a pilot in an aircraft. Typically, a pilot has a 220° field of view, i.e. 110° on each side of the nose of the plane. Secondly, to recreate the feeling of depth in the out-of window view presented to the pilot, images to be displayed are projected on a large curved rear-projection screen and which is viewed by a large reflective surface which is positioned at a certain distance from the pilot. Thirdly, the display system can be mounted on a moving simulator platform or be fixed in place and non-moving.
To overcome these challenges, many flight simulators manufacturers use a flexible reflective surface made of MYLAR®. MYLAR® is lightweight and can be somewhat curved. However, as Mylar stretches, it is not possible to achieve a perfect curvature and as a result the out-of window view displayed to the pilot is distorted in some areas.
Other flight simulators manufacturers use sheets of mirrors, installed one next to another, to form the reflective surface. However, because of the inherent movement of the flight simulator, a slight gap is left between the sheets of mirrors to prevent scraping, chipping and breaking of the edges of one sheet of mirror with the adjacent sheet of mirror. As no image is reflected by the gap between the sheets of mirrors, the gap can be visually perceived by the pilot in the flight simulator. The gap negatively affects the realism of the out-of window view of the pilot in the flight simulator, and is considered annoying by some.
There is therefore a need for improving the out-of window view presented to a pilot during training or evaluation in a flight simulator.
The present disclosure relates to a seam for visually suppressing a gap defined between two adjacent reflective surfaces. The seam comprises a strip of light propagating material and a plurality of lighting units. The strip of light propagating material defines a front surface, two sides surfaces and a back surface. The side surfaces of the strip of light propagating material are adapted for being positioned in the gap between the adjacent reflective surfaces. The lighting units are positioned along the back surface of the strip of light propagating material and are adapted for propagating light in the strip of light propagating material. When light is propagated in the strip of light propagating material, the gap between the two adjacent reflective surface is visually suppressed.
Embodiments of the disclosure will be described by way of example only with reference to the accompanying drawings, in which:
The foregoing and other features will become more apparent upon reading of the following non-restrictive description of illustrative embodiments thereof, given by way of example only with reference to the accompanying drawings. Like numerals represent like features on the various drawings.
Various aspects of the present invention generally address various drawbacks related to large reflective displays.
Referring now to
The seam 100 comprises a strip 120 of light propagating material. The strip 120 of light propagating material defines a front surface 122, two sides surfaces 124, 126 and a back surface 128. The side surfaces 124, 126 are adapted for positioning between the adjacent reflective surfaces 210, 212. The front surface 122 is adapted for visually suppressing the gap between the two adjacent reflective surfaces 210, 212 when the seam is actuated. More particularly, the front surface 122 is shaped so that when light is propagated from the back 128 of the strip 120 of light propagating material to the front 122 of the strip of the light propagating material, the light propagated is distributed substantially evenly along the front 122 of the strip 120 of light propagating material.
The strip 120 of light propagating material is shown on
The strip 120 of light propagating material is shown on
When the present seam 100 is used between reflective surfaces 210, 212 of a flight simulator, the strip 120 of light propagating material further absorbs the vibrations and movements between the reflective surfaces 210, 212, thereby further preventing chipping or cracking along the edges of the reflective surfaces 210, 212.
The strip 120 of light propagating material is further made of a material that allows light propagation therein. For example, the strip 120 of light propagating material is made of any of the following: a clear material, a semi-clear material, a semi-opaque material and/or a light scattering material. Alternatively, the 120 of light propagating material may have a front 122, back 128 and interior made of light propagating material, while the sides 124, 126 do not propagate light. For example, the sides 124, 126 could be painted or covered with a material having a dark or opaque color.
The strip 120 of light propagating material could have a hollow center between the front 122, the sides 124, 126 and the back 128. Alternatively, the strip 120 of light propagating material could have a solid center.
The strip 120 of light propagating material may be made of any of the following materials, either used solely, or in combination such as for example in sandwiched configuration: silicone, latex, plastic, or white closed-cell foam.
The seam 100 further comprises a plurality of lighting units 130.
The plurality of lighting units 130 are distributed along the back 128 of the strip 120 of light propagating material along a length of the reflective surfaces 210, 212. The plurality of lighting units 130 may be distributed evenly, i.e. at equal distance from one another along the back 128 of the strip 120 of light propagating material, or be distributed so as to visually connect the reflective surfaces 210, 212 where the seam or gap there between is more visible.
The plurality of lighting units 130 may be positioned against the back 128 of the strip 120 of light propagating material. Alternatively, the plurality of lighting units 130 may be positioned at a predetermined distance from the back 128 of the strip 120 of light propagating material.
Reference is now made concurrently to
Reference is now concurrently made to
The seam 100 further comprises a plurality of light detectors 150. Each light detector generates lighting data that is forwarded to a light controller 138 of a corresponding lighting unit 130. Each light detector 150 may consist of any of the following: an optic fiber conductor with a very small input aperture (e.g. pin-hole) inserted through the strip 120 of light propagating material, an LED light detector, a photosensor, a photodetector, a photocell, a miniature CCD camera, or any combination thereof. Each light detector 150 detects an intensity and color or light in an area of the reflective surfaces adjacent to the strip 120 of light propagating material where the light detector 150 is positioned. The light detector 150 generates from the detected intensity and color of the light detected lighting data. The lighting data is provided to the light controller 138 of the corresponding lighting unit 130. In a typical implementation, each lighting unit 130 is associated with a corresponding lighting detector 150. Each lighting unit 130 and corresponding lighting detector 150 may be implemented as two separate components, or be co-located in a single component. Each lighting detector 150 is also affixed to the support structure 140 by means known in the art for affixing components to a solid or semi-flexible material.
The strip 120 of light propagating material is affixed to the support structure 140 in such a manner that it facilities the insertion of the strip 120 of light propagating material between the reflective surfaces 210, 212. By maintaining the strip 120 of light propagating material from the back 128 onto the support structure 140 it makes is simple to gently compress the strip 120 of light propagating material between the two adjacent reflective surfaces 210, 212. Compression of the strip 120 of light propagating material between the two adjacent reflective surfaces 210, 212 may suffice to maintain the seam in position between the two adjacent reflective surfaces 210, 212.
As the strip 120 of light propagating material is inserted and compressed between the adjacent reflective surfaces 210, 212, and the support structure 140 is mounted on the back 128 of the strip 120 of light propagating material, the adjacent reflective surfaces 210, 212 may move with respect to one another during for example a flight simulation. Movement of the reflective surfaces 210, 212 with respect to one another, while having the strip 120 of light propagating material act as an absorbing material between the adjacent reflective surfaces 210, 212 prevents contact between the adjacent reflective surfaces 210, 212, and therefor the possible grinding, scratching, chipping and cracking of the adjacent reflective surfaces 210, 212 during particularly agitated simulations.
Reference is now concurrently made to
Typically, the input/output unit 130 receives the lighting data for a plurality of lighting units 130. To ensure that the input/output unit 130 forwards the lighting data to the correct lighting units 130, the lighting data is sent to the input/output unit using a standard or proprietary protocol, and each lighting data is associated with one of the lighting units 130. The input/output unit 160 thus receives either through wires or wireless the lighting data for the corresponding lighting units 130, and dispatches the lighting data to appropriate output ports in electronic communication with the corresponding lighting units 130.
Alternatively, the input/output unit 160 may correspond to a communication bus, which receives the lighting data and dispatch the received lighting data to the corresponding lighting units 130.
In this implementation, the red LED 132, the green LED 134 and the blue LED 136 are thus controlled by their respective light controller 138 based on the lighting data received from an image generator.
Reference is now made to
The reflective display 200 includes the seam previously discussed. Although
Reference is now made concurrently to
The processor 320 receives the stream of images to be reflectively displayed on the reflective surfaces 210, 212. The processor 320 analyses the stream of images to be displayed on the reflective display 200, to determine the colors and light intensity of the pixels positioned in the vicinity of the seam 100. For example, the processor 320 may extract from the memory 310 the position of the seam 100 on the reflective display 200, and determine the average color and light intensity for a predetermined number of pixels on each side of the seam 100, to generate the lighting data to be provided to the lighting units 130. To reduce processing power, the stream of images may be stored in memory 310, and sampled so as to analyze the colors and light intensity for a predetermined number of pixels on each side of the seam, for one out of every two, three, four or five images. The processor 320 may determine the average color and light intensity of the pixels on each side of the seam using any of the following transfer-function methods: area intensity averaging, running average box-car filtering, finite impulse response filtering (FIR), frequency-shift data replacement and individual red, green and blue intensity modulation, or any combination thereof. The processor 320 may average the color and light intensity on the pixels on each side of the seam for any of the following: independently for each image, averaged over a predetermined number of consecutive images, or averaged over a predetermined number of sampled images.
The processor 320 communicates via wired or wirelessly with the plurality of lighting units 130, and sends to each lighting unit 130 the corresponding lighting data, thereby controlling the lighting units 130.
Although the present seam, reflective display and image generator have been described hereinabove by way of non-restrictive, illustrative embodiments thereof, these embodiments may be modified at will within the scope of the appended claims without departing from the spirit and nature of the present disclosure.
Number | Date | Country | Kind |
---|---|---|---|
2925796 | Mar 2016 | CA | national |
Number | Name | Date | Kind |
---|---|---|---|
6061489 | Ezra | May 2000 | A |
6271808 | Corbin | Aug 2001 | B1 |
6814578 | Vorst | Nov 2004 | B2 |
6989935 | Domjan | Jan 2006 | B2 |
7346234 | Davis | Mar 2008 | B2 |
8045273 | Chen | Oct 2011 | B2 |
8115937 | Needham | Feb 2012 | B2 |
8610154 | Song | Dec 2013 | B2 |
9720279 | Kim | Aug 2017 | B2 |
10184623 | Vasylyev | Jan 2019 | B2 |
20030160919 | Suzuki | Aug 2003 | A1 |
20060291238 | Epstein | Dec 2006 | A1 |
20070152839 | Dalzell | Jul 2007 | A1 |
20080206720 | Nelson | Aug 2008 | A1 |
20110032223 | Okamoto | Feb 2011 | A1 |
20110234619 | Tokunaga | Sep 2011 | A1 |
20120235891 | Nishitani | Sep 2012 | A1 |
20120307490 | Ellis | Dec 2012 | A1 |
20130201227 | Miyazaki | Aug 2013 | A1 |
20140252336 | Kobayashi | Sep 2014 | A1 |
20150168681 | Han | Jun 2015 | A1 |
20150188091 | Kudo | Jul 2015 | A1 |
20160091785 | Inoko | Mar 2016 | A1 |
20160313491 | Li | Oct 2016 | A1 |
Number | Date | Country | |
---|---|---|---|
20170286043 A1 | Oct 2017 | US |