Seamless roaming in wireless networks

Information

  • Patent Grant
  • 9930595
  • Patent Number
    9,930,595
  • Date Filed
    Wednesday, September 30, 2015
    8 years ago
  • Date Issued
    Tuesday, March 27, 2018
    6 years ago
Abstract
A system and method for providing a seamless transition between access points for mobile devices. The method comprises associating a unique identifier for a plurality of mobile stations with a unique identifier for a first network in an acknowledgment table, then, upon receiving a frame from a mobile station, acknowledging the reception of the frame if the frame includes the unique identifier for the mobile station and the unique identifier for the network. The transfer of operation between access points is effectuated through the use of control circuitry which transfers portions of the contents of the acknowledgement table between various access points. This has the effect that the mobile stations does not sense a change in access points and thus the roaming from a first access point to a second access point is seamless.
Description

This application names the following inventors:














Inventor
Citizenship
Residence City & State







Vaduvur BHARGHAVAN
India
Morgan Hill,




California


Berend DUNSBERGEN
The
San Jose,



Netherlands
California









This application names Meru Networks, a business having an office in Sunnyvale, Calif., as assignee.


In wireless communication, devices send and receive messages without necessarily being physically coupled therefor. Wireless devices sometimes include location sensors (such as those using GPS), portable computers, mobile telephones, and the like. Portable computers with wireless communication capability sometimes are coupled to a computer network, such as the Internet or the World Wide Web. The IEEE 802.11 standards (including IEEE standard 802.11a, IEEE standard 802.11b, IEEE standard 802.11g, and IEEE standard 802.11n) include techniques for coupling wireless devices to computer communication networks. In the IEEE 802.11 standards, wireless devices seek out and select “access points”, also called “AP's” Each wireless device associates itself with a particular AP, with which it communicates. Each wireless device, such as a mobile station, also called an “STA” (which might be moving), determines from time to time whether it has good communication with its associated AP, and whether it would have better communication with a different AP.


Access points exhibit a known deficiency when an STA moves beyond the effective range of an AP, because the STA needs to re-establish communication with a new AP, a process called “handoff”. Handoff problems include loss of signal and decrease in QoS (Quality of Service). For applications requiring high QoS, such as digitally transmitting audio information, the latency time of the handoff can be uncomfortably perceptible to a human listener.


SUMMARY

Techniques, including apparatuses and methods for seamless transitions between AP's include associating a station UID (unique identifier) for a set of mobile stations, with a network UID for a network in an acknowledgment table. Upon receiving a frame from a mobile station in that set of mobile stations, reception of the frame is acknowledged only if the frame includes both the station UID for the mobile station and the network UID for the network. This has the effect that mobile stations might be associated with selected networks (and selected AP's), without troubling those AP's or their control hardware or software.


Transfer of a station's operation between AP's (i.e., handoff) is performed by transferring one or more portions of acknowledgment tables among AP's. This has the effect that AP's collectively know which AP is associated with that mobile station, and collectively respond to that mobile station only by its associated AP. This has the effect that when the AP's collectively (e.g., in response to a controller as described in the Incorporated Disclosures) determine that the mobile station should be transferred from a 1st AP to a 2nd AP, the mobile station does not sense a change in AP's, with the effect that any transfer from a 1st AP to a 2nd AP is substantially seamless to users of the mobile station.


This has the effect that AP's (or their controller, as described in the Incorporated Disclosures), determine to which AP each mobile station is associated, rather than the reverse (as generally specified by the IEEE standard protocols). In general, AP's and their controller are in a better position to determine to which AP a mobile station should be associated. Moreover, there is no particular requirement for a particular mobile station to undergo a time-consuming process of handoff when that mobile station should, from time to time, be associated with a different AP. This has the effect that the mobile station can be transferred between a 1st AP and a 2nd AP without troubling the mobile station, without even letting the mobile station know that the transfer has taken place, and without substantial latency in making the transfer.


INCORPORATED DISCLOSURES AND RELATED APPLICATIONS

This application claims the priority of, and hereby includes by reference as if fully set forth herein, the following:

    • U.S. Provisional Patent Application 61/095,578, filed Sep. 9, 2008, in the name of Vaduvur BHARGHAVAN and Berend DUNSBERGEN, titled “Seamless Roaming in Wireless Networks, assigned to the same assignee,
    • U.S. patent application Ser. No. 11/715,287, filed Mar. 7, 2007, in the name of Vaduvur BHARGHAVAN, Sung-Wook HAN, Joseph EPSTEIN, Berend DUNSBERGEN, and Saravanan BALASUBRAMANIAN, titled “Seamless Mobility in Wireless Networks”, assigned to the same assignee,
    • which itself claims the priority of, and hereby incorporates by reference as if fully set forth herein, the following: U.S. patent application Ser. No. 11/298,864, filed Dec. 9, 2005, in the name of Vaduvur BHARGHAVAN, Sung-Wook HAN, Joseph EPSTEIN, Berend DUNSBERGEN, and Saravanan BALASUBRAMANIAN, titled “Seamless Mobility in Wireless Networks”, and assigned to the same assignee,
    • which itself claims the priority of, and hereby incorporates by reference as if fully set forth herein, the following: U.S. patent application Ser. No. 11/294,673, filed Dec. 5, 2005, in the name of Rajendran VENUGOPALACHARY, Senthil PALANISAMY, Srinith SARANG, and Vaduvur BHARGHAVAN, titled “Omni-Directional Antenna Supporting Simultaneous Transmission and Reception of Multiple Radios with Narrow Frequency Separation”, and assigned to the same assignee.


These documents are sometimes referred to herein as the “Incorporated Disclosure” or the “Incorporated Disclosures”.







DETAILED DESCRIPTION
Generality of Invention

This application should be read in its most general possible form. For example and without limitation:


References to specific techniques include alternative and more general techniques, especially when discussing new aspects of the technologies, or how the invention might be made or used.


References to “preferred” techniques generally mean that the inventors contemplate using those techniques in a suitable context, for example and without limitation, a commercial context, and think they are best for that contemplated context. This explicitly does not exclude other and further techniques for making or using the invention, and does not mean that the described techniques are necessarily essential or that they would be preferred in all contexts.


References to contemplated causes and effects for some implementations do not preclude other causes or effects that might occur in other implementations.


References to reasons for using particular techniques do not preclude other reasons or other techniques, even if completely contrary, where circumstances would indicate that the stated reasons or techniques are not as applicable.


References to particular examples of techniques by which the invention might be made, used, or otherwise employed, do not preclude other examples or other techniques, even if completely contrary. After reading this application, those skilled in the art will recognize many other variations which are possible, which remain within the content, scope and spirit of the invention, and which would not require undue experimentation or new invention.


Definitions

This application should be read with these definitions in mind. These definitions are intended to show the most general form of the invention, and not to be restrictive in any way:


The phrase “access point”, the term “AP”, and the like, generally refer to devices capable of wireless communication with wireless devices and capable of either wired or wireless communication with other devices. The term “AP's”, and the like, generally refers to a set of one or more such devices. For example, AP's might communicate with external devices using a L2/L3 network. However, in the context of the invention, there is no particular requirement that AP's have an actual wired communication link; AP's might communicate entirely wirelessly themselves.


The phrases “incoming message”, “received frame”, and the like, generally refer to a message packet or message frame sent by a wireless device or wireless station to one or more AP's, and received at a particular AP. Received frames might be sent by a wireless station to one or more AP's using one or more of the IEEE 802.11 wireless communication standards, some similar one or more standards, or some other one or more standards. The incoming message may be a unicast frame (i.e., intended for a single AP) or a multicast frame (i.e., intended for a set of, possibly multiple, AP's).


The phrases “outgoing message” and “transmit frame”, and the like, generally refer to a message packet or message frame being sent to one or more wireless devices or stations from an AP. Transmit frames might be sent from an AP using one or more of the IEEE 802.11 wireless communication standards, some similar one or more standards, or some other one or more standards. The incoming message may be a unicast frame (i.e., intended for a single AP) or a multicast frame (i.e., intended for a set of, possibly multiple, AP's).


The phrase “wireless communication”, and the like, generally refers to radio frequency or other electromagnetic communication. Wireless communication might make use of a wireless communication standard such as one or more of IEEE standards 802.11a, 802.11b, 802.11g, or 802.11n, some similar one or more standards, or some other one or more standards. However, in the context of the invention, there is no particular requirement that wireless communication or a communication network must necessarily (1) use radio spectrum, (2) use electromagnetic communication, or even (3) be entirely confined to untethered communication coupling. For examples, wireless communication might use sonic waves, possibly including ultrasound, or wireless communication might make use of both wired and unwired communication paths.


The phrases “wireless device”, “wireless station”, “mobile station” and the like, (“STAs”) generally refer to devices capable of wireless communication with AP's. These devices need not be mobile, such as for example a desktop computer with wireless capability. Wireless communication might make use of a wireless communication standard such as one or more of IEEE standards 802.11a, 802.11b, 802.11g, or 802.11n, some similar one or more standards, or some other one or more standards. However, in the context of the invention, there is no particular requirement that one or more of these particular communication standards are used, e.g., the wireless communication might be conducted according to a standard other than an IEEE 802.11 standard, or even according to standard other than an IEEE standard entirely. Moreover, in the context of the invention, there is no particular requirement that all, or even a designated subset of, wireless devices use the same standard, or that such wireless devices even use inter-compatible communication standards.


Digital communications devices might operate using a multi-layer configuration, such as for example one including Application, Presentation, Session, Transport, Network, Data Link, and Physical layers. The term “layer”, and the like, generally refers to a collection of related functions that provides services to one or more layers above it and receives services from one or more layers below it in a designated ordering. For example, a layer that provides error-free communications across a network might provide a path useful to applications above it, while that layer that provides error-free communications across a network might make use of one or more lower layers to send and receive packets that make up the contents of the path.


ACK Table Operation



FIG. 1



FIG. 1 illustrates an acknowledgment table (“ACK Table”) as might be found in a memory device of an access point, or in the control circuitry of a wireless communications device (i.e., a mobile device). The ACK Table as shown provides for a data structure relating a station unique identifier such as a media access control (MAC) address of a mobile station to a basic service set identifier (BSSID), sometimes called herein a “network unique identifier” of a network. However, in the context of the invention, there is no particular requirement that these particular data items are used. Other, further, or distinct data elements might be used to match mobile stations with their associated networks.


A BSSID is used to identify one or more IEEE 802.11 wireless LAN's with which a mobile station attempts to communicate. An example of at least one vendor's implementation of an ACK Table implemented in a communications chip set is implemented and shown in Broadcom models 4342, 4322 and 4387. Other devices may have this same or a similar capability, whether or not from the same vendor.


In the ACK Table shown in the FIG. 1, a MAC address represents the physical address of a mobile device disposed for being connected to a network, generally expressed as a 48-bit hexadecimal number (i.e., 6 octets). Wireless networks are often included in a multi-layer configuration that allows for operation between hierarchies of systems. The MAC layer is generally a sublayer, as defined by the IEEE standard 802 protocols, of a networking layer. The MAC sublayer is responsible for delivering error-free data between two computers on the network.


Mobile stations are each associated with a station unique identifier, which is itself associated with a network unique identifier, the latter including a unique BSSID the mobile station might access, which is itself associated with one or more particular networks in a wireless communication system. This has the effect that the mobile station can access those particular networks, and no others. The mobile station's unique BSSID access ability might be moved from a 1st AP to a 2nd AP when reassigning the mobile station from the 1st AP to the 2nd AP. As only those AP's with the MAC address of the mobile station in their ACK Table will respond to the mobile station, the one or more AP's maintaining that unique BSSID are the only AP's that respond to message packets from the mobile station. While such AP's might be only one designated such AP at any particular time, in the context of the invention, there is no particular requirement for this restriction, and in fact, during transfer of a mobile station from a 1st AP to a 2nd AP, there will generally be at least some time during which the MAC address for that AP is present in the ACK Tables for each of the 1st AP and the 2nd AP. As the one or more AP's maintaining that unique BSSID are the only AP's that respond to message packets from that particular mobile station, this has the effect of limiting access by that particular mobile station to only networks available to those one or more AP's maintaining that unique BSSID.



FIG. 2



FIG. 2 shows the beginning of a typical frame format for use in the IEEE 802.11 communications protocol. Not all fields are necessarily present in every frame. Frame communication between the same devices may have different frame formats at different stages of the communication process. This may include changing frame formats between communication layers within a wireless communication device.


In operation, distinct receive frames might require differing responses or acknowledgments. For example and without limitation, a unicast MAC Protocol Data Unit (MPDU or MMPDU) receive frame generally requires, according to the IEEE 802 protocol standards, an ACK frame response. Other receive frames may require more efficient forms of acknowledgment such as BLOCK-ACK frames. Upon reception of a frame requiring an ACK, each AP receiving that frame will search its ACK Table for an entry where a MAC address matches a BSSID supported in the AP. Only if the received frame requires a response and a matching entry is found, will the AP respond with the appropriate response. The response type is based on the received frame.


Upon reception of a frame requiring an ACK, each AP receiving that frame will search its ACK Table for an entry where both the Address1 matches the BSSID and the Address2 matches the MAC address. Only if the received frame requires a response and a matching entry is found, will the AP respond with the appropriate response. The response type is in response to the received frame.


Shared BSSID



FIG. 3



FIG. 3 shows a functional block diagram of a sharing a BSSID. Mobile stations are configured to attempt to find available AP's for communication. Processors in the mobile stations evaluate factors for connections and make independent roaming decisions to make sure they are connected to the best AP. In preferred embodiments the mobile stations roam seamlessly across AP's because the roaming decisions are made by the infrastructure (APs and a controller). This has the effect that all handoffs between different APs are completely transparent to the mobile stations.


To effectuate seamless roaming, a is 1st access point AP1 contains an ACK Table as described above. The ACK Table contains both mobile station MAC addresses and BSSIDs and is coupled to one or more mobile stations. For the transition of STA2 from AP1 to AP2, both AP1 and AP2 support the same BSSID (BSSID1). By creating a shared media environment with the same BSSID, both AP's can receive the same frame from STA2. However, through the operation of the ACK Table, only the AP that has a complete matching entry in the ACK Table will respond to the STA. Before the transition, only AP1 has complete information for STA2. This has the effect that STA2 transitions from AP1 to AP2 transparently because the STA does not sense that a different AP has taken over the communications link. Communication and coordination between the APs is preformed through the operation of the controller (not shown), which effects the proper ACK Table for each AP.


Per Station BSSID



FIG. 4



FIG. 4 shows a functional block diagram of using a per station BSSID. In the FIG. 4 an access point AP1 is constructed with an ACK Table having a MAC address for each mobile station and an associated BSSID for each mobile station. To effectuate seamless roaming, the BSSID from the is 1st AP (AP1) is transferred to the 2nd AP (AP2) during the transition. The transfer is effectuated by a controller (not shown). Through the operation of the ACK Table, only the AP that has a complete matching entry in the ACK Table will respond to the STA. Before the transition, only AP1 has complete information for STA2. During the transition, AP2 receives complete ACK Table information relating to STA2. After the transition, only AP2 has complete ACK Table information for STA2. This has the effect that STA2 transitions from AP1 to AP2 transparently because the STA does not sense that a different AP has taken over the communications link. Communication and coordination between the AP's is performed through the operation of the controller, which effects the proper ACK Table for each AP.


Alternative Embodiments

The invention has applicability and generality to other aspects of wireless communication, and is not limited to wireless communication based upon IEEE 802.11 standards. After reading this application, those having skill in the art would recognize that the systems and methods disclosed herein my be effectuated using other techniques. For example and without limitation, the transmission time might be provided by the physical layer or data link layer to a higher level for determining the transmission time.


After reading this application, those skilled in the art would recognize that the scope and spirit of the invention include other and further embodiments beyond the specifics of those technologies disclosed herein, and that such other and further embodiments would not require undue experimentation or new invention.

Claims
  • 1. A computer-implemented method performed by an access point of a plurality of access points managed by a controller of a wireless communication network the method comprising the steps of: selecting the access point of the of plurality of access points to associate with a mobile station, wherein the selection of the access point is performed by the controller;associating the mobile station of a plurality of mobile stations with the access point by storing, at both the mobile station and the access point, a persistent, uniquely assigned BSSID (Basic Service Set Identifier) that is uniquely assigned to the mobile station among a plurality of persistent uniquely-assigned BSSIDs stored at the access point that are assigned to the plurality of mobile stations, wherein each of the plurality of access points independently using layer 2 communications and the persistent, uniquely-assigned BSSID is configured in the mobile station by the access point with a beacon frame or a probe response frame sent from the mobile station to the access point;receiving a frame from the mobile station, the frame comprising a sender address defined by a MAC address unique to the mobile station and a receiver address defined by the persistent, uniquely-assigned BSSID, wherein the frame further comprises a response requirement;responsive to not matching the receiver address of the received frame to one of the stored BSSIDs, ignoring the received frame; andresponsive to a handoff of the mobile station from the access point to another access point of the plurality of access points, wherein the handoff is determined by the controller, disassociating the mobile station from the access point by deleting the persistent, uniquely-assigned BSSID, wherein the another access point associates with the mobile station by storing the persistent, uniquely-assigned BSSID allowing the mobile station to seamlessly continue to store and use the same persistent, uniquely-assigned BSSID for communication with the wireless communication network.
  • 2. The method of claim 1, further comprising: receiving the persistent, uniquely-assigned BSSID from the controller assigning the mobile station to the access point.
  • 3. The method of claim 1, further comprising: receiving a message from the controller disassociating the mobile station from the access point.
  • 4. A non-transitory computer readable medium storing a computer program product that, when executed by a processor performs a method in an access point of a plurality of access points managed by a controller of a wireless communication network the method comprising the steps of: selecting the access point of the of plurality of access points to associate with a mobile station, wherein the selection of the access point is performed by the controller;associating the mobile station of a plurality of mobile stations with the access point by storing, at both the mobile station and the access point, a persistent, uniquely assigned BSSID (Basic Service Set Identifier) that is uniquely assigned to the mobile station among a plurality of persistent uniquely-assigned BSSIDs stored at the access point that are assigned to the plurality of mobile stations, wherein each of the plurality of access points independently using layer 2 communications and the persistent, uniquely-assigned BSSID is configured in the mobile station by the access point with a beacon frame or a probe response frame sent from the mobile station to the access point;receiving a frame from the mobile station, the frame comprising a sender address defined by a MAC address unique to the mobile station and a receiver address defined by the persistent, uniquely-assigned BSSID, wherein the frame further comprises a response requirement;responsive to not matching the receiver address of the received frame to one of the stored persistent, uniquely-assigned BSSIDs, ignoring the received frame; andresponsive to a handoff of the mobile station from the access point to another access point of the plurality of access points, wherein the handoff is determined by the controller, disassociating the mobile station from the access point by deleting the persistent, uniquely-assigned BSSID, wherein the another access point associates with the mobile station by storing the persistent, uniquely-assigned BSSID allowing the mobile station to seamlessly continue to store and use the same persistent, uniquely-assigned BSSID for communication with the wireless communication network.
  • 5. The at least one computer readable product of claim 4, further comprising: receiving the persistent, uniquely assigned BSSID from the controller assigning the mobile station to the access point.
  • 6. The at least one computer readable product of claim 4, further comprising: receiving a message from the controller disassociating the mobile station from the access point.
  • 7. The at least one computer readable product of claim 4, further comprising: receiving the persistent, uniquely assigned BSSID from the controller assigning the mobile station to the access point.
  • 8. An access point of a plurality of access points managed by a controller of a wireless communication network, comprising: a processor; and a memory coupled to the processor and containing program code, which when executed cause the processor to: select the access point of the of plurality of access points to associate with a mobile station, wherein the selection of the access point is performed by the controller;associate the mobile station of a plurality of mobile stations with the access point by storing, at both the mobile station and the access point, a persistent, uniquely assigned BSSID (Basic Service Set Identifier) that is uniquely assigned to the mobile station among a plurality of persistent uniquely-assigned BSSIDs stored at the access point that are assigned to the plurality of mobile stations, wherein each of the plurality of access points independently using layer 2 communications and the persistent, uniquely-assigned BSSID is configured in the mobile station by the access point with a beacon frame or a probe response frame sent from the mobile station to the access point;receive a frame from the mobile station, the frame comprising a sender address defined by a MAC address unique to the mobile station and a receiver address defined by the persistent, uniquely-assigned BSSID, wherein the frame further comprises a response requirement;responsive to not matching the receiver address of the received frame to one of the stored persistent, uniquely-assigned BSSIDs, ignoring the received frame; andresponsive to a handoff of the mobile station from the access point to another access point of the plurality of access points, disassociate the mobile station from the access point by deleting the persistent, uniquely-assigned BSSID, wherein the another access point associates with the mobile station by storing the persistent, uniquely-assigned BSSID allowing the mobile station to seamlessly continue to store and use the same persistent, uniquely-assigned BSSID for communication with the wireless communication network.
US Referenced Citations (143)
Number Name Date Kind
3956749 Magorian May 1976 A
5038151 Kaminski Aug 1991 A
5125108 Talwar Jun 1992 A
5177788 Schanning et al. Jan 1993 A
5337397 Lebby et al. Aug 1994 A
5519706 Bantz et al. May 1996 A
5884272 Walker et al. Mar 1999 A
5966094 Ward et al. Oct 1999 A
6023621 Jackson et al. Feb 2000 A
6658047 Komulainen et al. Dec 2003 B1
6721334 Ketcham Apr 2004 B1
6728603 Pruzan et al. Apr 2004 B2
6760318 Bims Jul 2004 B1
6788658 Bims Sep 2004 B1
6839038 Weinstein Jan 2005 B2
6877043 Mallory et al. Apr 2005 B2
6894649 Ostervall May 2005 B2
6933909 Theobold Aug 2005 B2
6950629 Nagy Sep 2005 B2
6954177 Channabassapa et al. Oct 2005 B2
6978158 Ghavami Dec 2005 B2
6999802 Kim Feb 2006 B2
7057566 Theobold Jun 2006 B2
7171215 Khouaja et al. Jan 2007 B2
7194008 Chu et al. Mar 2007 B2
7197308 Singhal et al. Mar 2007 B2
7277728 Kauhanen Oct 2007 B1
7319685 Kim et al. Jan 2008 B2
7333455 Bolt et al. Feb 2008 B1
7336670 Calhoun et al. Feb 2008 B1
7359362 King et al. Apr 2008 B2
7400604 Lee et al. Jul 2008 B2
7403506 Lee et al. Jul 2008 B2
7406319 Kostic et al. Jul 2008 B2
7420942 Wang Sep 2008 B2
7426388 Wright et al. Sep 2008 B1
7430397 Suda et al. Sep 2008 B2
7433722 Sakamoto et al. Oct 2008 B2
7444425 Lehmann, Jr. et al. Oct 2008 B2
7466981 Abdelmahid et al. Dec 2008 B1
7499673 Saliga et al. Mar 2009 B2
7515909 Jain et al. Apr 2009 B2
7555287 Heinonen et al. Jun 2009 B1
7630402 Un et al. Dec 2009 B2
7630403 Ho et al. Dec 2009 B2
7693513 Chou Apr 2010 B2
7826426 Bharghavan et al. Nov 2010 B1
7843910 Loughran et al. Nov 2010 B2
7881271 Oishi Feb 2011 B2
8027637 Bims Sep 2011 B1
8090374 Rezvani et al. Jan 2012 B2
8121057 Botha Feb 2012 B1
8472359 Bharghavan et al. Jun 2013 B2
8787309 Bharghavan et al. Jul 2014 B1
20020022483 Thompson et al. Feb 2002 A1
20020060995 Cervello et al. May 2002 A1
20020086640 Belcher et al. Jul 2002 A1
20020091846 Garcia Jul 2002 A1
20020112008 Christenson et al. Aug 2002 A1
20020147031 Hood Oct 2002 A1
20020181629 Shibata Dec 2002 A1
20030162546 Jordan Aug 2003 A1
20030198305 Taylor et al. Oct 2003 A1
20030199247 Striemer Oct 2003 A1
20030206532 Shpak Nov 2003 A1
20030206535 Shpak Nov 2003 A1
20030207697 Shpak Nov 2003 A1
20030207698 Shpak Nov 2003 A1
20030207699 Shpak Nov 2003 A1
20030236103 Tamaki et al. Dec 2003 A1
20040051668 Chang Mar 2004 A1
20040063455 Eran Apr 2004 A1
20040121770 Tigerstedt et al. Jun 2004 A1
20040141617 Volpano Jul 2004 A1
20040156399 Eran Aug 2004 A1
20040183726 Theobald Sep 2004 A1
20040185904 Yamakita Sep 2004 A1
20040235453 Chen et al. Nov 2004 A1
20050041688 Bernhard et al. Feb 2005 A1
20050054370 Shpak Mar 2005 A1
20050102529 Buddhikot et al. May 2005 A1
20050111405 Kanterakis May 2005 A1
20050122919 Touag Jun 2005 A1
20050135321 Sharony Jun 2005 A1
20050152314 Sun et al. Jul 2005 A1
20050153713 Sharony Jul 2005 A1
20050156794 Theobald et al. Jul 2005 A1
20050156799 Theobald Jul 2005 A1
20050195110 Lin et al. Sep 2005 A1
20050219143 Schadler et al. Oct 2005 A1
20050220048 Lee et al. Oct 2005 A1
20050238054 Sharma Oct 2005 A1
20050261970 Vucina et al. Nov 2005 A1
20060002331 Bhagwat et al. Jan 2006 A1
20060025127 Cromer et al. Feb 2006 A1
20060049987 Herrick Mar 2006 A1
20060056443 Tao et al. Mar 2006 A1
20060098613 Kish et al. May 2006 A1
20060111112 Maveddat May 2006 A1
20060120339 Akiyama Jun 2006 A1
20060132360 Caimi et al. Jun 2006 A1
20060159092 Boers Jul 2006 A1
20060203819 Farinacci et al. Sep 2006 A1
20060215691 Kobayashi et al. Sep 2006 A1
20060221993 Liao et al. Oct 2006 A1
20060281500 Huang et al. Dec 2006 A1
20070014267 Lam et al. Jan 2007 A1
20070026807 Kish Feb 2007 A1
20070117514 Gainey et al. May 2007 A1
20070165610 Tsang et al. Jul 2007 A1
20070195725 Iino et al. Aug 2007 A1
20070201468 Jokela Aug 2007 A1
20070213071 Hwang Sep 2007 A1
20070218875 Calhoun et al. Sep 2007 A1
20080014956 Balasubramanian Jan 2008 A1
20080102835 Zhao et al. May 2008 A1
20080112373 Shpak May 2008 A1
20080153497 Kalhan Jun 2008 A1
20080159535 Kim Jul 2008 A1
20080165866 Teo et al. Jul 2008 A1
20080167093 Nagano et al. Jul 2008 A1
20080212535 Karaoguz et al. Sep 2008 A1
20080242305 Kahlert et al. Oct 2008 A1
20080287130 Laroia et al. Nov 2008 A1
20090022127 Traynor et al. Jan 2009 A1
20090023434 Trainor et al. Jan 2009 A1
20090061873 Bao et al. Mar 2009 A1
20090061879 Gallagher et al. Mar 2009 A9
20090111472 Promenzio Apr 2009 A1
20090235354 Gray Sep 2009 A1
20090252165 Zhang et al. Oct 2009 A1
20100080151 Proctor et al. Apr 2010 A1
20110040969 Yao et al. Feb 2011 A1
20110188484 Reznik et al. Aug 2011 A1
20110305217 Seok Dec 2011 A1
20120307792 Ram et al. Dec 2012 A1
20120314696 Liu Dec 2012 A1
20120317619 Dattagupta et al. Dec 2012 A1
20130148609 Ram et al. Jun 2013 A1
20130188539 Han et al. Jul 2013 A1
20130201918 Hirakawa et al. Aug 2013 A1
20140112322 Ram et al. Apr 2014 A1
20140126466 Hamdi et al. May 2014 A1
Foreign Referenced Citations (2)
Number Date Country
2005311580 Nov 2005 JP
2006229972 Aug 2006 JP
Non-Patent Literature Citations (38)
Entry
Amir. “Fast Handoff for Seamless Wireless Mesh Networks.” MobiSys '06, Jun. 19-22, 2006, pp. 83-95, ACM, Uppsala, Sweden.
Business Wire. “Meru Networks Delivers Industry's Only Zero-Loss Mobility Across WLAN Access Points and IP Subnets.” Jun. 21, 2004, pp. 1-2.
Chen et al. “A Seamless Handoff Mechanism for OHCP-Based IEEE 802.11 WLANS.” IEEE Communications Letters, Aug. 2007, pp. 665-667, vol. 1, No. 8.
Cheung et al. “Network Configurations for Seamless Support of COMA Soft Handoffs Between Cell Clusters.” IEEE Journal on Selected Areas in Communications, Sep. 1997, pp. 1276-1278, vol. 15, No. 7.
Chou et al. “Intelligent Agent Over WLAN With Seamless Handover and Load Balancing.” 2006 International Conference on Communication Technology, Nov. 27-Nov. 30, 2006, pp. 1-7, IEEE. (Abstract).
Chui et al. “An Access Point Coordination System for Improved VoIP/WLAN Handover Performance.” IEEE, 2006, pp. 501-505.
Fan et al. “Managing Heterogeneous Access Networks.” 32nd IEEE Conference on Local Computer Networks, 2007, pp. 651-658, IEEE 2007, pp. 651-658.
Finneran. “Can WLAN switches support voice? Today's controllers offer key security and QoS capabilities, but as always, the devil's in the details.” Business Communications Review, Oct. 2006, pp. 42-47.
Habib et al. “Multi-antenna techniques for OFDM based WLAN.” Proceedings of First International Conference on Next-Generation Wireless Systems, Jan. 2006, pp. 186-190.
Huang et al. “Incorporating AP Selection and Call Admission Control for Seamless Handoff Procedure.” Proceedings of the International Conference on Computer and Communication Engineering 2008, pp. 823-826.
Huang et al. “SAP: Seamless Authentication Protocol for Vertical Handoff in Heterogeneous Wireless Networks.” Third International Conference in Heterogeneous Wired/Wireless Networks, Aug. 7-9, 2006, pp. 1-10, Waterloo, ON, CA.
Hur et al. “A Distributed-Request-Based Diffsery CAC for Seamless Fast-Handoff in Mobile Internet.” J. Sole-Pareta et al. (Eds.): Q of IS 2004: International Workshop on Quality of Future Internet Services, LNCS 3266, pp. 184-193, 2004.
IEEE Std 802. Nov. 1997 Information Technology—telecommunications and Information exchange between systems—Local and Metropolitan Area Networks—specific Requirements—part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications, IEEE Std 802.11-1997, vol. , No. , pp. i-445, Nov. 18, 1997.
IEEE. “Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications.” IEEE Std. 802.11, 1999 Edition (R2003), 2003, vol. No. pp. i-513.
Jang et al. “Mobility Support Algorithm Based on Wireless 802.11 b LAN for Fast Handover.” 5th International Conference, PDCAT 2004, Dec. 8-10, 2004, pp. 715-718, Springer Verlag. (Abstract).
Zhou et al. “A Seamless Handoff Scheme for Mobile IP.” 2006 IEEE 63rd Vehicular Technology Conference, VTC 2006-Spring, May 7-Jul. 10, 2006, pp. 927-931, IEEE. (Abstract).
Kist. “Instant Handoffs for Wireless Infrastructure Meshed Networks.” Proceedings of the 2008 Australasian Telecommunication Networks and Applications Conference, 2008, pp. 288-293.
Kitahara et al. “A base station adaptive antenna for downlink transmission in a OS-COMA system.” IEEE 51 st Vehicular Technology Conference Proceedings, 2000 (abstract).
Liao et al. “Practical Schemes for Smooth MAC Layer Handoff in 802.11 Wireless Networks.” Proceedings of the 2006 International Symposium on a World of Wireless, Mobile and Multimedia Networks. IEEE, 2006, pp. 1-10.
Lv. “Intelligent Seamless Vertical Handoff Algorithm for the Next Generation Wireless Networks.” Mobilware '08, Feb. 12-15, 2008, pp. 1-10, Innsbruck, Austria.
Mahler et al. “Design and optimisation of an antenna array for WiMAX base stations.” IEEE/ACES International Conference on Wireless Communications and Applied Computational Electromagnetics, 2005 (abstract).
Mannion. “Foundry Networks enters WLAN management fray—Bets on integration with wired infrastructure, market timing to take on Cisco.” Electronic Engineering Times, Sep. 8, 2003, p. 32, No. 1286.
Manodham. “A Seamless Handoff Scheme with New AP Module for Wireless LANs Support VoIP.” 2006. International Symposium on Applications and the Internet, SAINT 2006, Jan. 23-27, 2006, pp. 253-258, IEEE. (Abstract).
Manodham et al. “A Seamless Handoff Scheme with New AP Module for Wireless LANs support VoIP.” Proceedings of the 2005 Symposium on Applications and the Internet, 2006, pp. 1-6, IEEE.
Marsh. “Power and wireless options extend Ethernet's reach: Ethernet's power-delivery and wireless abilities offer new application potential that hugely extends the reach of the IEEE's 802.X series of standards.” EDN, Nov. 11, 2004, p. 67, Reed Business Information.
Miaris et al. “On the base stations antenna system design for mobile communications.” Electrical Engineering, 2006, vol. 88, pp. 157-163.
Miura et al. “Study of array pattern tuning method using hybrid genetic algorithms for figure-8 satellite's earth station antenna.” Asia-Pacific Microwave Conference Proceedings, 2000 (abstract).
Murray et al. “Intelligent Access and Mobility Management in Heterogeneous Wireless Networks Using Policy.” ACM First International Workshop on Information and Communication Technologies, 2003, pp. 181-186.
Ponnapalli et al. “Design and packaging of antennas for wireless systems.” Proceedings of Electrical Performance of Electrical Packaging, 1995 (abstract).
Rist et al. “Wireless LANS—Look, Ma . . . No Wires—Wireless networking products prove they are finally ready for prime time.” Internetweek, Mar. 20, 2000, p. 41, No. 805, CMP Media, Inc.
Sarolic. “Base station antenna near-field radiation pattern distortion analysis.” Transactions on Engineering Sciences, 2003, pp. 1-10, vol. 41, WIT Press.
Sattari et al. “Seamless Handover Between WLAN and UMTS.” 2004 IEEE 59th Vehicular Technology Conference, VTC2004-Spring: Towards a Global Wireless World, May 17-19, 2004, pp. 3035-3038, IEEE. (Abstract).
Thomsen. “Development Platform for Dynamic Bandwidth Allocation Schemes in Future MPCP Enabled Ethernet Passive Optical Network (EPON).” WSEAS Transactions on Communications, Apr. 5, 2006, pp. 92-98, WSEAS. (Abstract).
Wei et al. “Seamless Handoff Support in Wireless Mesh Networks.” 2006, pp. 1-8, IEEE.
Xhafa et al. “Seamless Handover in Building Using HVAC Ducts: A New System Architecture.” IEEE Global Telecommunications Conference GLOBECOM'03, Dec. 1-5, 2003, pp. 3093-3097, IEEE. (Abstract).
Yaakob et al. “An Integration of Mobile Motion Prediction with Dedicated Solicitation Message for Seamless Handoff Provisioning in High Speed Wireless Environment.” 2008 International Conference on Electronic Design, Dec. 1-3, 2008, Pernang, Malaysia, pp. 1-5.
Yamagata et al. “Seamless Handover for Hotspot Network Using Adaptive Flow Control Method.” 2005 Asia-Pacific Conference on Communications, Oct. 3-5, 2005, pp. 502-506, IEEE. (Abstract).
Zhou et al. A Seamless Handoff Scheme for Mobile IP. IEEE Vehicular Technology Conference, 2006, pp. 927-931, vol. 2.
Related Publications (1)
Number Date Country
20160112917 A1 Apr 2016 US
Provisional Applications (1)
Number Date Country
61095578 Sep 2008 US
Continuations (3)
Number Date Country
Parent 12550061 Aug 2009 US
Child 14870005 US
Parent 11298864 Dec 2005 US
Child 11715287 US
Parent 11298864 Dec 2005 US
Child 12550061 US
Continuation in Parts (3)
Number Date Country
Parent 11715287 Mar 2007 US
Child 12550061 US
Parent 11294673 Dec 2005 US
Child 11298864 US
Parent 11294673 Dec 2005 US
Child 11298864 US