The present disclosure generally relates to data processing systems. More specifically, the present disclosure relates to methods, systems and computer program products for ranking content.
A social networking service is a computer- or web-based application that enables users to establish links or connections with persons for the purpose of sharing information with one another. Some social networking services aim to enable friends and family to communicate with one another, while others are specifically directed to business users with a goal of enabling the sharing of business information. For purposes of the present disclosure, the terms “social network” and “social networking service” are used in a broad sense and are meant to encompass services aimed at connecting friends and family (often referred to simply as “social networks”), as well as services that are specifically directed to enabling business people to connect and share business information (also commonly referred to as “social networks” but sometimes referred to as “business networks”).
With many social networking services, members are prompted to provide a variety of personal information, which may be displayed in a member's personal web page. Such information is commonly referred to as personal profile information, or simply “profile information”, and when shown collectively, it is commonly referred to as a member's profile. For example, with some of the many social networking services in use today, the personal information that is commonly requested and displayed includes a member's age, gender, interests, contact information, home town, address, the name of the member's spouse and/or family members, and so forth. With certain social networking services, such as some business networking services, a member's personal information may include information commonly included in a professional resume or curriculum vitae, such as information about a person's education, employment history, skills, professional organizations, and so on. With some social networking services, a member's profile may be viewable to the public by default, or alternatively, the member may specify that only some portion of the profile is to be public by default. Accordingly, many social networking services serve as a sort of directory of people to be searched and browsed.
Some embodiments are illustrated by way of example and not limitation in the figures of the accompanying drawings in which:
The present disclosure describes methods and systems for generating a ranked list in a professional social networking service. In the following description, for purposes of explanation, numerous specific details are set forth in order to provide a thorough understanding of the various aspects of different embodiments of the present invention. It will be evident, however, to one skilled in the art, that the present invention may be practiced without all of the specific details.
Consistent with embodiments of the invention, and as described in detail herein, a professional social networking service (hereinafter “social network” or “social network service”) includes the necessary logic for a relevance booster module to calculate a relevance, with respect to at least one characteristic of a query, of each piece of content in a set of collected content and a set of premium content. The relevance booster module increases a calculated relevance of at least one piece of content in the set of premium content. The relevance booster module generates a list in which each piece of content in the set of collected content and the set of premium content is ranked according to a respective calculated relevance.
In one embodiment, a professional social networking service stores a set of free job posting (“free set”) and a set of premium job postings (“premium set”). The set of free job postings comprises content created external to the professional social networking service. The set of premium job postings comprises content created within the professional social networking service. The relevance booster module calculates a relevance score for each respective job posting in both the free and premium sets with respect the job posting's relevance to at least one of a search query keyword, professional social network member profile data, professional social network member behaviour data and any other kind of data in the professional social networking service.
The relevance booster module generates a list that ranks the calculated relevance scores of the job postings. In some embodiments, the relevance booster module increases a relevance score to one or more job postings from the premium set according to one or more tunable weights.
In other embodiments, the relevance booster module divides the list into a plurality of segments, where each segment reserved a pre-defined number of top ranked positions for premium job postings. For example, a first segment has the first ten ranked positions (1-10), with ranked positions 1-3 reserved for premium job postings. The second segment has the second ten ranked positions (11-20), with ranked positions 11-13 reserved for premium job postings.
The relevance booster module identifies the three premium job postings that have the highest relevance score among all the premium job postings present in the top ten ranked positions (1-10) of the first segment. The relevance booster module places the three identified premium job postings at positions 1-3 of the first segment. For positions 4-10 in the first segment, the relevance booster module ranks the remaining premium job postings and free job postings present in the first segment according to their respect relevance score.
The relevance booster module identifies the three premium job postings that have the highest relevance score among all the premium job postings present in the top ten ranked positions (11-20) of the second segment. The relevance booster module places the three identified premium job postings at positions 11-13 of the second segment. For positions 14-20 in the second segment, the relevance booster module ranks the remaining premium job postings and free job postings present in the second segment according to their respect relevance score.
Turning now to
An Application Program Interface (API) server 114 and a web server 116 are coupled to, and provide programmatic and web interfaces respectively to, one or more application servers 118. The application servers 118 host one or more applications 120. The application servers 118 are, in turn, shown to be coupled to one or more database servers 124 that facilitate access to one or more databases 126. While the applications 120 are shown in
Further, while the system 100 shown in
The web client 106 accesses the various applications 120 via the web interface supported by the web server 116. Similarly, the programmatic client 108 accesses the various services and functions provided by the applications 120 via the programmatic interface provided by the API server 114.
As shown in
In some embodiments, the application logic layer 203 includes various application server modules 204, which, in conjunction with the user interface module(s) 202, generates various user interfaces (e.g., web pages) with data retrieved from various data sources in the data layer 205. In some embodiments, individual application server modules 204 are used to implement the functionality associated with various services and features of the social network service. For instance, the ability of an organization to establish a presence in a social graph of the social network service, including the ability to establish a customized web page on behalf of an organization, and to publish messages or status updates on behalf of an organization, may be services implemented in independent application server modules 204. Similarly, a variety of other applications or services that are made available to members of the social network service may be embodied in their own application server modules 204.
As shown in
The profile data 216 may also include information regarding settings for members of the social network service. These settings may comprise various categories, including, but not limited to, privacy and communications. Each category may have its own set of settings that a member may control.
Once registered, a member may invite other members, or be invited by other members, to connect via the social network service. A “connection” may require a bi-lateral agreement by the members, such that both members acknowledge the establishment of the connection. Similarly, with some embodiments, a member may elect to “follow” another member. In contrast to establishing a connection, the concept of “following” another member typically is a unilateral operation, and at least with some embodiments, does not require acknowledgement or approval by the member that is being followed. When one member follows another, the member who is following may receive status updates or other messages published by the member being followed, or relating to various activities undertaken by the member being followed. Similarly, when a member follows an organization, the member becomes eligible to receive messages or status updates published on behalf of the organization. For instance, messages or status updates published on behalf of an organization that a member is following will appear in the member's personalized data feed or content stream. In any case, the various associations and relationships that the members establish with other members, or with other entities and objects, may be stored and maintained as social graph data within a social graph database 212.
The social network service may provide a broad range of other applications and services that allow members the opportunity to share and receive information, often customized to the interests of the member. For example, with some embodiments, the social network service may include a photo sharing application that allows members to upload and share photos with other members. With some embodiments, members may be able to self-organize into groups, or interest groups, organized around a subject matter or topic of interest. With some embodiments, the social network service may host various job listings providing details of job openings with various organizations.
As members interact with the various applications, services and content made available via the social network service, the members' behaviour (e.g., content viewed, links or member-interest buttons selected, etc.) may be monitored and information 218 concerning the member's activities and behaviour may be stored, for example, as indicated in
The data layer 205 further includes a jobs repository 220 which includes content comprising various types of job postings. The jobs repository includes job postings created at and collected from multiple sources outside of the professional social networking service, such as descriptions of jobs submitted to various job posting websites from various users free of charge. The jobs repository also includes premium job postings created by members of the professional social networking service. In some embodiments, various members create and customize respective job postings to be displayed within the professional social networking service for a fee.
In some embodiments, the professional social networking service provides an application programming interface (API) module via which third-party applications can access various services and data provided by the social network service. For example, using an API, a third-party application may provide a user interface and logic that enables an authorized representative of an organization to publish messages from a third-party application to a content hosting platform of the social network service that facilitates presentation of activity or content streams maintained and presented by the social network service. Such third-party applications may be browser-based applications, or may be operating system-specific. In particular, some third-party applications may reside and execute on one or more mobile devices (e.g., a smartphone, or tablet computing devices) having a mobile operating system.
The data and information (e.g., profile data 216, member activity and behaviour data 218, trained salary data 222) in the data layer 205 may be accessed, used, and adjusted by the relevance booster module 206 as will be described in more detail below in conjunction with
The output module 310 is a hardware-implemented module which sends any outputs to one or more components of system 100 of
The relevance calculator module 315 is a hardware implemented module which manages, controls, stores, and accesses information associated with calculating a relevancy score for one or more portions of collected content and/or one or more portions of premium content with respect to the query.
The relevance increase module 320 is a hardware-implemented module which manages, controls, stores, and accesses information associated with increasing a calculated relevancy score of at least one portion of premium content.
The list generation module 325 is a hardware-implemented module which manages, controls, stores, and accesses information associated with generated a ranked list in which each piece of collected content and premium content is ranked according to a respective calculated relevance score.
The relevance booster module 206 identifies a particular member of the professional social networking service to whom various job postings will be shown. The relevance booster module 206 identifies data about the particular member, such as profile data, data about the member's browsing behaviours, and data related to the member's connections with other member's, etc. Based on such identified data about the member, the relevance booster module 206 determines which job postings in both the set of free job postings and the set of premium job postings are relevant to the particular member. The relevance booster module 206 calculates a relevance score for each free job posting 401-1, 401-2, 401-3, 401-4, 401-5, 401-6 and each premium job posting 402-1, 402-2, 402-3, 402-4.
The relevance booster module 206 increases the calculated relevance score for each premium job posting 402-1, 402-2, 402-3, 402-4. For example, the relevance booster module 206 can apply one or more weights (or tunable weights) to each premium job posting 402-1, 402-2, 402-3, 402-4 that increases each premium job posting's calculated relevance score. The relevance booster module 206 generates a ranked list 400 based on ranking the calculated relevance scores for each free job posting and for each premium job posting.
As shown in
The relevance booster module 206 identifies one or more segments in the ranked list 400. For example, as shown in
The relevance booster module 206 adds a graphical characteristic (such as, for example, a star graphic illustrated in
At operation 610, the relevance booster module 206 calculates a relevance, with respect to at least one characteristic of a query, of each piece of content in a set of collected content and a set of premium content.
At operation 620, the relevance booster module 206 increases a calculated relevance of at least one piece of content in the set of premium content.
At operation 630, a relevance booster module 206 generates a list in which each piece of content in the set of collected content and the set of premium content is ranked according to a respective calculated relevance.
Certain embodiments are described herein as including logic or a number of components, modules, or mechanisms. Modules may constitute either software modules (e.g., code embodied on a machine-readable medium or in a transmission signal) or hardware modules. A hardware module is a tangible unit capable of performing certain operations and may be configured or arranged in a certain manner. In example embodiments, one or more computer systems (e.g., a standalone, client or server computer system) or one or more hardware modules of a computer system (e.g., a processor or a group of processors) may be configured by software (e.g., an application or application portion) as a hardware module that operates to perform certain operations as described herein.
In various embodiments, a hardware module may be implemented mechanically or electronically. For example, a hardware module may comprise dedicated circuitry or logic that is permanently configured (e.g., as a special-purpose processor, such as a field programmable gate array (FPGA) or an application-specific integrated circuit (ASIC)) to perform certain operations. A hardware module may also comprise programmable logic or circuitry (e.g., as encompassed within a general-purpose processor or other programmable processor) that is temporarily configured by software to perform certain operations. It will be appreciated that the decision to implement a hardware module mechanically, in dedicated and permanently configured circuitry, or in temporarily configured circuitry (e.g., configured by software) may be driven by cost and time considerations.
Accordingly, the term “hardware module” should be understood to encompass a tangible entity, be that an entity that is physically constructed, permanently configured (e.g., hardwired) or temporarily configured (e.g., programmed) to operate in a certain manner and/or to perform certain operations described herein. Considering embodiments in which hardware modules are temporarily configured (e.g., programmed), each of the hardware modules need not be configured or instantiated at any one instance in time. For example, where the hardware modules comprise a general-purpose processor configured using software, the general-purpose processor may be configured as respective different hardware modules at different times. Software may accordingly configure a processor, for example, to constitute a particular hardware module at one instance of time and to constitute a different hardware module at a different instance of time.
Hardware modules can provide information to, and receive information from, other hardware modules. Accordingly, the described hardware modules may be regarded as being communicatively coupled. Where multiple of such hardware modules exist contemporaneously, communications may be achieved through signal transmission (e.g., over appropriate circuits and buses) that connect the hardware modules. In embodiments in which multiple hardware modules are configured or instantiated at different times, communications between such hardware modules may be achieved, for example, through the storage and retrieval of information in memory structures to which the multiple hardware modules have access. For example, one hardware module may perform an operation, and store the output of that operation in a memory device to which it is communicatively coupled.
A further hardware module may then, at a later time, access the memory device to retrieve and process the stored output. Hardware modules may also initiate communications with input or output devices, and can operate on a resource (e.g., a collection of information).
The various operations of example methods described herein may be performed, at least partially, by one or more processors that are temporarily configured (e.g., by software) or permanently configured to perform the relevant operations. Whether temporarily or permanently configured, such processors may constitute processor-implemented modules that operate to perform one or more operations or functions. The modules referred to herein may, in some example embodiments, comprise processor-implemented modules.
Similarly, the methods described herein may be at least partially processor-implemented. For example, at least some of the operations of a method may be performed by one or more processors or processor-implemented modules. The performance of certain of the operations may be distributed among the one or more processors, not only residing within a single machine, but deployed across a number of machines. In some example embodiments, the processor or processors may be located in a single location (e.g., within a home environment, an office environment or as a server farm), while in other embodiments the processors may be distributed across a number of locations.
The one or more processors may also operate to support performance of the relevant operations in a “cloud computing” environment or as a “software as a service” (SaaS). For example, at least some of the operations may be performed by a group of computers (as examples of machines including processors), these operations being accessible via a network (e.g., the Internet) and via one or more appropriate interfaces (e.g., application program interfaces (APIs)).
Example embodiments may be implemented in digital electronic circuitry, or in computer hardware, firmware, software, or in combinations of them. Example embodiments may be implemented using a computer program product, e.g., a computer program tangibly embodied in an information carrier, e.g., in a machine-readable medium for execution by, or to control the operation of, data processing apparatus, e.g., a programmable processor, a computer, or multiple computers.
A computer program can be written in any form of programming language, including compiled or interpreted languages, and it can be deployed in any form, including as a stand-alone program or as a module, subroutine, or other unit suitable for use in a computing environment. A computer program can be deployed to be executed on one computer or on multiple computers at one site or distributed across multiple sites and interconnected by a communication network.
In example embodiments, operations may be performed by one or more programmable processors executing a computer program to perform functions by operating on input data and generating output. Method operations can also be performed by, and apparatus of example embodiments may be implemented as, special purpose logic circuitry (e.g., a FPGA or an ASIC).
The computing system can include clients and servers. A client and server are generally remote from each other and typically interact through a communication network. The relationship of client and server arises by virtue of computer programs running on the respective computers and having a client-server relationship to each other. In embodiments deploying a programmable computing system, it will be appreciated that that both hardware and software architectures require consideration. Specifically, it will be appreciated that the choice of whether to implement certain functionality in permanently configured hardware (e.g., an ASIC), in temporarily configured hardware (e.g., a combination of software and a programmable processor), or a combination of permanently and temporarily configured hardware may be a design choice. Below are set out hardware (e.g., machine) and software architectures that may be deployed, in various example embodiments.
Example computer system 700 includes a processor 702 (e.g., a central processing unit (CPU), a graphics processing unit (GPU) or both), a main memory 704, and a static memory 706, which communicate with each other via a bus 708. Computer system 700 may further include a video display device 710 (e.g., a liquid crystal display (LCD) or a cathode ray tube (CRT)). Computer system 700 also includes an alphanumeric input device 712 (e.g., a keyboard), a user interface (UI) navigation device 714 (e.g., a mouse or touch sensitive display), a disk drive unit 716, a signal generation device 718 (e.g., a speaker) and a network interface device 720.
Disk drive unit 716 includes a machine-readable medium 722 on which is stored one or more sets of instructions and data structures (e.g., software) 724 embodying or utilized by any one or more of the methodologies or functions described herein. Instructions 724 may also reside, completely or at least partially, within main memory 704, within static memory 706, and/or within processor 702 during execution thereof by computer system 700, main memory 704 and processor 702 also constituting machine-readable media.
While machine-readable medium 722 is shown in an example embodiment to be a single medium, the term “machine-readable medium” may include a single medium or multiple media (e.g., a centralized or distributed database, and/or associated caches and servers) that store the one or more instructions or data structures. The term “machine-readable medium” shall also be taken to include any tangible medium that is capable of storing, encoding or carrying instructions for execution by the machine and that cause the machine to perform any one or more of the methodologies of the present technology, or that is capable of storing, encoding or carrying data structures utilized by or associated with such instructions. The term “machine-readable medium” shall accordingly be taken to include, but not be limited to, solid-state memories, and optical and magnetic media. Specific examples of machine-readable media include non-volatile memory, including by way of example semiconductor memory devices, e.g., Erasable Programmable Read-Only Memory (EPROM), Electrically Erasable Programmable Read-Only Memory (EEPROM), and flash memory devices; magnetic disks such as internal hard disks and removable disks; magneto-optical disks; and CD-ROM and DVD-ROM disks.
Instructions 724 may further be transmitted or received over a communications network 726 using a transmission medium. Instructions 724 may be transmitted using network interface device 720 and any one of a number of well-known transfer protocols (e.g., HTTP). Examples of communication networks include a local area network (“LAN”), a wide area network (“WAN”), the Internet, mobile telephone networks, Plain Old Telephone (POTS) networks, and wireless data networks (e.g., WiFi and WiMAX networks). The term “transmission medium” shall be taken to include any intangible medium that is capable of storing, encoding or carrying instructions for execution by the machine, and includes digital or analog communications signals or other intangible media to facilitate communication of such software.
Although an embodiment has been described with reference to specific example embodiments, it will be evident that various modifications and changes may be made to these embodiments without departing from the broader spirit and scope of the technology. Accordingly, the specification and drawings are to be regarded in an illustrative rather than a restrictive sense. The accompanying drawings that form a part hereof, show by way of illustration, and not of limitation, specific embodiments in which the subject matter may be practiced. The embodiments illustrated are described in sufficient detail to enable those skilled in the art to practice the teachings disclosed herein. Other embodiments may be utilized and derived therefrom, such that structural and logical substitutions and changes may be made without departing from the scope of this disclosure. This Detailed Description, therefore, is not to be taken in a limiting sense, and the scope of various embodiments is defined only by the appended claims, along with the full range of equivalents to which such claims are entitled.
Such embodiments of the inventive subject matter may be referred to herein, individually and/or collectively, by the term “invention” merely for convenience and without intending to voluntarily limit the scope of this application to any single invention or inventive concept if more than one is in fact disclosed. Thus, although specific embodiments have been illustrated and described herein, it should be appreciated that any arrangement calculated to achieve the same purpose may be substituted for the specific embodiments shown. This disclosure is intended to cover any and all adaptations or variations of various embodiments. Combinations of the above embodiments, and other embodiments not specifically described herein, will be apparent to those of skill in the art upon reviewing the above description.
This application claims priority to U.S. Provisional Application No. 62/057,877, filed Sep. 30, 2014, and entitled “SEARCH RELEVANCE BOOSTING FOR PREMIUM CONTENT”, which is incorporated by reference herein in its entirety.
Number | Date | Country | |
---|---|---|---|
62057877 | Sep 2014 | US |