This application relates generally to a seat assembly for a patient transport device and methods of use thereof.
Patient transport devices may be used for loading and unloading patients into and out of ambulances or other transport vehicles. In moving patients to the ambulance or other transport vehicle, first responders may be required to transport the patients over various obstacles, including stairs that may include poor and/or minimal lighting. These obstacles present challenges to the first responders and increase the difficulty of transporting the patient to the ambulance or other transport vehicle.
Accordingly, a need exists for alternative patient transport devices, and in particular for alternative seat assemblies for patient transport devices.
In one embodiment, a seat assembly includes a seat casing including a bottom surface, a rear edge including a rear edge outward-facing surface, where the rear edge extends downward from the bottom surface in a vertical direction, and a lighting unit including a controller including a processor and a memory storing a machine readable and executable instruction set, a sensor communicatively coupled to the controller, and a light output communicatively coupled to the controller, where the light output is coupled to at least one of the bottom surface or the rear edge outward-facing surface of the seat casing, where the light output extends across the seat casing in a lateral direction, and where the light output selectively provides light beneath the seat assembly, where the controller commands the lighting unit to change between an ON position in which the light output is engaged and illuminated and an OFF position in which the light output is disengaged not illuminated based on a signal from the sensor.
In another embodiment, a patient transport device includes a patient transport frame, a seat portion that is repositionable between a collapsed position and an extended position, the seat portion including a seat casing including a bottom surface, a rear edge including a rear edge outward-facing surface, where the rear edge outward-facing surface extends downward from the bottom surface in a vertical direction, a sensor coupled to at least one of the seat casing or the patient transport frame, a light output coupled to at least one of the bottom surface or the rear edge outward-facing surface of the seat casing, where the light output is communicatively coupled and responsive to the sensor, such that the light output changes between an ON position in which the light output is engaged and illuminated and an OFF position in which the light output is disengaged and not illuminated based on a signal from the sensor.
In yet another embodiment, a patient transport device includes a patient transport frame, a track assembly pivotally coupled to the patient transport frame, where the track assembly is repositionable between a deployed position and a stowed position, a user control communicatively coupled to the track assembly, where the user control selectively commands the track assembly to rotate, a battery pack electrically coupled to the track assembly, where the battery pack provides electrical power to the track assembly, and a seat assembly severally coupled to the patient transport frame, the seat assembly including a seat casing including a bottom surface, a rear edge including a rear edge outward-facing surface, where the rear edge extends downward from the bottom surface in a vertical direction, and a lighting unit including a light output that is coupled to at least one of the bottom surface or the rear edge outward-facing surface of the seat casing, where the light output extends across the seat casing in a lateral direction, and where the light output selectively provides light beneath the seat assembly.
These and other features and advantages of the present disclosure will be more fully understood from the following description of the various embodiments of the present disclosure taken together with the accompanying drawings. It is noted that the scope of the claims is defined by the recitations therein, and not by the specific discussion of features and advantages set forth in the present disclosure.
The embodiments set forth in the drawings are illustrative and exemplary in nature and not intended to limit the subject matter defined by the claims. The following detailed description of the illustrative embodiments may be understood when read in conjunction with the following drawings, where like structure is indicated with like reference numerals and in which:
Seat assemblies according to the present disclosure include a lighting unit that includes a light output that is coupled to at least one of a bottom surface of the seat assembly or a rear edge outward-facing surface of the seat assembly. In one embodiment, the lighting unit includes a controller that is communicatively coupled to the light output, where the controller facilitates operation of the lighting unit. In other embodiments, the seat assembly is severally coupled to a patient transport device that includes a track assembly that may assist a first responder in moving the patient transport device up and down stairs. By including a lighting unit that includes a light output that is coupled to at least one of the bottom surface of the seat assembly or the rear edge outward-facing surface of the seat assembly, the lighting unit may provide light beneath a patient transport device, assisting first responders in identifying obstacles while moving patients to and from an emergency service vehicle. These and other embodiments will be described in more detail below in reference to the appended drawings.
Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which embodiments of this disclosure belong. The terminology used herein is for describing particular embodiments only and is not intended to be limiting. As used in the specification and appended claims, the singular forms “a,” “an,” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise.
The phrase “communicatively coupled,” is used herein to describe the interconnectivity of various components of the seat assembly and means that the components are connected either through wires, optical fibers, or wirelessly such that electrical, optical, and/or electromagnetic signals may be exchanged between the components. The phrase “electrically coupled” is used herein to describe the interconnectivity of various components of the seat assembly and means that the components are connected through wires or the like, such that electrical current may be exchanged between the components.
Referring to
Each edge of the seat casing 12 includes an outward facing surface. The rear edge 14 includes a rear edge outward-facing surface 14a, the front edge 16 includes a front edge outward-facing surface 16a, the left side edge 18 includes a left side outward-facing surface 18a, and the right side edge 19 includes a right side edge outward-facing surface 19a. The seat casing 12 is formed from a polymer-based plastic. Alternatively, the seat casing 12 may be formed from any suitable material, including, but not limited to, polymers, elastomers, metals, fiberglass, composites, or the like. The seat assembly 10 includes a lighting unit 70 that includes a light output. In the embodiment depicted in
Referring to
The seat assembly 10 includes the illumination panel 20 attached to the rear edge outward-facing surface 14a of the seat casing 12. The illumination panel 20 includes the rear light output 22a that is coupled to the rear edge 14 of the seat casing 12. The rear light output 22a may be integral with and/or attached to the illumination panel 20. The seat assembly 10 may further include a lower light output 22b that is coupled to the bottom surface 13 of the seat assembly 10. The lower light output 22b is coupled to and may be removable from the bottom surface 13 of the seat casing 12. As depicted, the lower light output 22b extends in a lateral direction (i.e., in the +/−Y-direction depicted in
Referring to
The illumination panel 20 includes an operating element that may selectively engage or disengage the rear light output 22a and/or the lower light output 22b (
Alternatively or additionally, the lighting unit 70 includes an activation sensor. In embodiments, the illumination panel 20 may include an illumination panel activation sensor 37 coupled to the base 24 that selectively engages or disengages the rear light output 22a and/or the lower light output 22b (
Referring to
Referring to
The shell 34 may be made of a transparent and/or translucent material such that light may pass through the shell 34 to reach a housing activation sensor 38 that is coupled to and/or positioned within the housing 30. The seat assembly 10 may include the housing activation sensor 38 in addition to or as an alternative to the illumination panel activation sensor 37 (
Referring to
Referring to
As depicted, the patient transport device 50 is a stair chair with a track assembly 55. The track assembly 55 is pivotally coupled to the patient transport device 50 through latching assembly 57 that selectively moves the track assembly 55 between a deployed position and a stowed position. The track assembly 55 is also pivotally connected at lower ends, via a pair of brackets 58, to a patient transport frame 52 for pivotal movement between the deployed position and the stowed position. In the deployed position, as depicted in
The patient transport device 50 includes the patient transport frame 52 including a front portion 51 and a rear portion 53. The patient transport frame 52 includes a collapsible seating assembly 54 including a seat portion 59, and ground-contacting wheels 56. The seat portion 59 includes the seat assembly 10 which is severally coupled to the patient transport frame 52. The seat portion 59 is repositionable between a collapsed position and an extended position, as depicted in
As described above, the seat assembly 10 includes the rear light output 22a and the lower light output 22b which are coupled to the rear edge 14 and the bottom surface 13 of the seat assembly 10, respectively. As the rear light output 22a and the lower light output 22b are coupled to the rear edge 14 and the bottom surface 13 of the seat assembly 10, once the seat assembly 10 is attached to a patient transport device, such as the patient transport device 50, the rear light output 22a and the lower light output 22b are positioned to provide light beneath the patient transport device 50. In particular, to transport a patient up or down a stair case, the patient transport device 50 may be pivoted about axis 100 in direction 102, such that the track assembly 55 contacts and engages stairs and/or stair ledges. As the patient transport device 50 pivots about axis 100, the rear light output 22a and the lower light output 22b are positioned to provide lighting underneath the patient transport device 50 to assist the first responder using the patient transport device and identifying obstacles beneath the patient transport device 50.
Referring to
The patient transport device 50 further includes a battery pack 82 that is electrically coupled to and provides electrical power to the track assembly 55. In some embodiments, the battery pack 82 may additionally be electrically coupled to the seat assembly 10 and may provide electrical power to the rear light output 22a and the lower light output 22b, alternative to or in addition to the batteries 35 (
Referring to
In the embodiment shown in
Referring now to
It is noted that the term “processor” generally means a device that executes functions according to machine readable instructions such as, for example, an integrated circuit, a microchip, a computer, a central processing unit, a graphics processing unit, field-programmable gate array (FPGA), an application-specific integrated circuit (ASIC), or any other computation device. The machine readable instructions can be stored in memory communicatively coupled to the processor. The term “memory,” as used herein, generally means one or more apparatus capable of storing data or machine readable instructions for later retrieval such as, but not limited to, RAM, ROM, flash memory, hard drives, or combinations thereof.
The machine readable instructions described herein may comprise logic or algorithms written in any programming language of any generation (e.g., 1GL, 2GL, 3GL, 4GL, or 5GL) such as, e.g., machine language that may be directly executed by the processor, or assembly language, object-oriented programming (OOP), scripting languages, microcode, etc., that may be compiled or assembled into machine readable instructions and stored on a machine readable medium. Alternatively, the logic or algorithm may be written in a hardware description language (HDL), such as implemented via either an FPGA configuration or an ASIC, or their equivalents. according to one or more embodiments described herein that depicts the electrical connections between the various electrical components of the seat assembly 10 and the operational logic and features provided thereby.
The controllers 90 command the lighting unit 70 to change between an ON position and an OFF position according to one or more operating element or sensor such as, for example, the manual input 28 attached to the base 24 of the illumination panel 20. In some embodiments, the manual input 28 is communicatively coupled to the one or more controllers 90 (generally indicated in
The rear light output 22a, the lower light output 22b, or both are communicatively coupled to the one or more controllers 90. Accordingly, the rear light output 22a, the lower light output 22b, or both can be selectively activated by functions executed by the one or more controllers 90. In particular, the rear light output 22a and/or the lower light output 22b are engaged and illuminated when the lighting unit 70 is in the ON position, and the rear light output 22a and/or the lower light output 22b are disengaged and not illuminated when the lighting unit 70 is in the OFF position.
In some embodiments, power can be provided to the lighting unit 70 via the batteries 35 (
In some embodiments, the alert of the acoustic transducer 94 can be contemporaneous with blinking or flashing of light by the rear light output 22a attached to the base 24 of the illumination panel 20 and the lower light output 22b attached to the bottom surface 13 of the seat casing 12. The combined alert of the lighting unit 70 can be utilized to indicate that the lighting unit is in operation and in the ON position. Once the lighting unit 70 is in operation and in the ON position, the lighting unit 70 can be automatically set to an IDLE mode or a RUN mode depending on the position of the seat assembly 10.
The lighting unit 70 is capable of operating in at least three modes. Specifically, a RUN mode, an IDLE mode and a DEEP SLEEP mode. Each mode will be described separately in conjunction with the apparatus and method of using the seat assembly 10 according to the embodiments described in
The lighting unit 70 can automatically be changed to the ON position when the patient transport frame 52, 61 moves at least partially from the collapsed position toward the extended position. The one or more positional sensors 92 that are communicatively coupled to the one or more controllers 90 can be provided on the patient transport devices 50, 60 and/or the seat assembly 10 to detect information indicative of either the collapsed position or the extended position of the patient transport device 50, 60 and send a signal to the one or more controllers 90. For example, the lighting unit 70 can be automatically switched to the ON position when the positional sensors 92 detect that the seat assembly 10 and seat portion 59 according to the patient transport device 50 is in an extended or unfolded position, as shown in
Alternatively or additionally, the lighting unit 70 can be configured to automatically switch from the ON position to the OFF position described above when the illumination panel activation sensor 37 and/or the housing activation sensor 38 detects a light level above a predetermined light threshold (e.g., when the sensor is exposed to light) and send a signal to the one or more controllers 90. When the lighting unit 70 is in the RUN mode, the power consumption can be at a relatively high level depending on the type of illumination device utilized to from the being used, i.e., the current draw for illuminating the rear light output 22a and the lower light output 22b can be a substantial proportion of the current draw of the lighting unit. Accordingly, by switching the lighting unit 70 to the OFF position based on signals from the one or more positional sensors 92 and/or the illumination panel activation sensor 37 and the housing activation sensor 38, the power utilized by the seat assembly 10 may be minimized when the patient transport device 50, 60 is not in use or when lighting conditions render the illumination of the rear light output 22a and the lower light output 22b unnecessary.
Regarding the IDLE mode, the lighting unit 70 can be activated to the ON position, with the exception that the rear light output 22a and the lower light output 22b which are automatically switched to an OFF position to reduce the power consumption of the lighting unit 70. Thus the power consumption of the lighting unit 70 can be at an intermediate level (e.g., a current draw of about 4 mA).
Regarding the DEEP SLEEP mode, both the lighting unit 70 including the rear light output 22a and the lower light output 22b are automatically switched to the OFF position but remain in an operational state. The power consumption of the lighting unit 70 in the DEEP SLEEP mode can be at a relatively low level (e.g., a current draw of about 700 uA).
When the lighting unit 70 is in the RUN mode, the lighting unit 70 is capable of entering the IDLE mode or DEEP SLEEP mode. The IDLE mode may automatically be entered after about 5 minutes of inactivity of the seat assembly 10, which can be detected via the one or more positional sensors 92. The DEEP SLEEP mode may automatically be entered by the user via actively pushing the manual input 28 for about 4 seconds. A signal can be provided by the acoustic transducer 94 once the user activates the DEEP SLEEP mode, such a signal can include a long descending tone or melody.
When the lighting unit 70 is in the IDLE mode, the lighting unit 70 is capable of entering the RUN mode or the DEEP SLEEP mode. The RUN mode can be activated by one or more methods. For example, user activation via the manual input 28 can activate the RUN mode. Once the manual input 28 is activated a short beeping sound is given to alert or signal the user that the rear light output 22a and the lower light output 22b have been activated or switched from the OFF position to the ON position. Alternatively or additionally, movement or shaking of the seat assembly 10 can activate the RUN mode. Specifically, the one or more positional sensors 92 can detect movement of the seat assembly 10, such as movement of or deployment of the patient transport device 50, 60. Thus, the lighting unit 70 can be automatically activated or switched from the OFF position to the ON position.
With respect to the DEEP SLEEP mode, the lighting unit 70 may automatically switch from the IDLE mode into the DEEP SLEEP mode after about 25 minutes of inactivity of the seat assembly 10, which can be detected by the one or more positional sensors 92. Once the switch is automatically made from the IDLE mode to the DEEP SLEEP mode an alert or signal can be provided. The alert or signal may be three long descending tones or melodies.
When the lighting unit 70 is in the DEEP SLEEP mode, the lighting unit 70 can be configured such that the RUN mode can only be reactivated by actuation of the manual input 28. Once the manual input 28 has been actuated to reactivate the lighting unit 70 into the RUN mode, an alert or signal can be provided to indicate that the lighting unit 70 has entered the RUN mode. The alert or signal may be two short ascending tones or melodies.
It should now be understood that seat assemblies according to the present disclosure include a lighting unit that includes a light output that is coupled to at least one of a bottom surface of the seat assembly or a rear edge outward-facing surface of the seat assembly. In one embodiment, the lighting unit includes a controller that is communicatively coupled to the light output, where the controller facilitates operation of the lighting unit. In other embodiments, the seat assembly is severally coupled to a patient transport device that includes a track assembly that may assist a first responder in moving the patient transport device up and down stairs. By including a lighting unit that includes a light output that is coupled to at least one of the bottom surface of the seat assembly or the rear edge outward-facing surface of the seat assembly, the lighting unit may provide light beneath a patient transport device, assisting first responders in identifying obstacles while moving patients to and from an emergency service vehicle. Further, by utilizing a controller to facilitate operation of the lighting unit, the lighting unit may conserve power when not in use or when additional lighting is unnecessary.
It is noted that the terms “substantially” and “about” may be utilized herein to represent the inherent degree of uncertainty that may be attributed to any quantitative comparison, value, measurement, or other representation. These terms are also utilized herein to represent the degree by which a quantitative representation may vary from a stated reference without resulting in a change in the basic function of the subject matter at issue.
While particular embodiments have been illustrated and described herein, it should be understood that various other changes and modifications may be made without departing from the spirit and scope of the claimed subject matter. Moreover, although various aspects of the claimed subject matter have been described herein, such aspects need not be utilized in combination. It is therefore intended that the appended claims cover all such changes and modifications that are within the scope of the claimed subject matter.
The present application claims the benefit of and priority to U.S. Provisional Patent Application No. 61/976,694, filed on Apr. 8, 2014 and entitled “Seat Assembly for a Patient Transport Device,” the entire disclosure of which is hereby incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
6416272 | Suehiro | Jul 2002 | B1 |
6702314 | Crose | Mar 2004 | B1 |
20070095581 | Chambliss | May 2007 | A1 |
20090143943 | Jaramillo | Jun 2009 | A1 |
20100052381 | Tingley | Mar 2010 | A1 |
20150120340 | Cheatham, III | Apr 2015 | A1 |
Number | Date | Country |
---|---|---|
WO2013025780 | Feb 2013 | WO |
WO2014035250 | Mar 2014 | WO |
Entry |
---|
International Search Report and Written Opinion relating to International Application No. PCT/US2015/024898 mailed on Jul. 15, 2015. |
Number | Date | Country | |
---|---|---|---|
20150285478 A1 | Oct 2015 | US |
Number | Date | Country | |
---|---|---|---|
61976694 | Apr 2014 | US |