The following description of the background of the invention is provided simply as an aid in understanding the invention and is not admitted to describe or constitute prior art to the invention.
The present application relates generally to the field of occupant restraint systems for use in vehicles. More specifically, the disclosed embodiments relate to the use of radio frequency devices to detect seat belt usage and to communicate seat belt usage information to the vehicle's restraint control module. This information may be used to modify air bag deployment, to warn the driver of seat belts not in use, or other purposes.
It has been known to use switches to detect seat belt usage. For example, “slide switches,” “micro-switches,” or “Hall-effect switches” have been used as such devices within occupant restraint systems to detect seat belt usage. However, wired seat belt switches require numerous wires to run from each seat belt to a single restraint control module. Such switches can be difficult or impossible to implement in vehicle systems.
Accordingly, what is needed is an occupant detection system that wirelessly detects whether a seat belt is properly buckled or engaged. More specifically, what is needed is a wireless seat belt monitoring system that utilizes radio frequency devices to indicate the usage or status of a seat belt.
According to one embodiment, a seat belt monitoring system is provided that includes a seat belt system. The seat belt system includes a first portion that has a seat belt webbing and a tongue. The seat belt system further includes a buckle. A first radio frequency device is associated with the first portion. A second radio frequency device is placed near the buckle. A radio frequency receiver detects a particular spatial relationship between the first and second radio frequency devices.
According to another embodiment, a seat belt monitoring system is provided that includes a seat belt system. The seat belt system includes a first portion that has a seat belt webbing and a tongue. The seat belt system further includes a buckle. A radio frequency device is associated with the first portion. A radio frequency receiver detects a signal of the radio frequency device. Further, a radio frequency wave altering device actively alters a signal of the radio frequency device.
According to yet another embodiment, a set belt monitoring system is provided that includes a seat belt system. The seat belt system includes a first portion that has a seat belt webbing and a tongue. The seat belt system further includes a buckle. A radio frequency device is associated with the first portion. A radio frequency receiver detects a signal of the radio frequency device and is placed between an occupant and the radio frequency device.
It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory only, and are not restrictive of the invention as claimed. These and other features, aspects and advantages of the present invention will become apparent from the following description, appended claims, and the accompanying exemplary embodiments shown in the drawings, which are briefly described below.
The patent or application file contains at least one drawing executed in color. Copies of this patent or patent application publication with color drawing(s) will be provided by the Office upon request and payment of necessary fee.
Embodiments of the present invention will be described below with reference to the accompanying drawings. It should be understood that the following description is intended to describe exemplary embodiments of the invention, and not to limit the invention.
Additionally, the vehicle 100 is equipped with a vehicle control module 106. The restraint control module 105 may communicate information regarding each of the first 201 and second 213 seat belt systems to the vehicle control module 106. The information received by the vehicle control module 106 may be used to alter airbag deployment, to warn the driver of a vehicle 100 of seat belts not in use, or other purposes. The communication between the vehicle control module 106 and the restraint control module 105 may be interrupt-driven on a change of seat belt system event or may be accomplished by a periodic polling communication of either the vehicle control module 106 or the restraint control module 105. Further, the communication may be wired or wireless.
Any of the vehicle restraint module 105, the vehicle control module 106, or a radio frequency receiver might include a general purpose computing device in the form of a conventional computer, including a processing unit, a system memory, a system bus that couples various system components including the system memory to the processing unit, and software. The system memory may include read only memory (ROM) and random access memory (RAM). The computer may also include a magnetic hard disk drive for reading from and writing to a magnetic hard disk, a magnetic disk drive for reading from or writing to a removable magnetic disk, and an optical disk drive for reading from or writing to removable optical disk such as a CD-ROM or other optical media. The drives and their associated computer-readable media provide nonvolatile storage of computer-executable instructions, data structures, program modules and other data for the computer. In another embodiment, any of the vehicle restraint module 105, the vehicle control module 106, or a radio frequency receiver may be implemented with a special purpose computer or embedded device, such as an application-specific integrated circuit (ASIC). In other embodiments, any of the vehicle restraint module 105, the vehicle control module 106, or a radio frequency receiver may be implemented in a plurality of separate computers wherein each of the computers has separate software modules.
While
It should be noted that the term “radio frequency device” as used herein and in the claims is intended to encompass all devices that are capable of transmitting or reflecting a radio frequency signal. In some embodiments, the radio frequency device is a passive radio frequency identification device. In other embodiments, the radio frequency device is an active radio frequency identification device. A radio frequency device may be a passive radio frequency device. A radio frequency device may also be an active device. In some embodiments, a radio frequency device transmits or reflects a signal that indicates a particular unique identity. In such embodiments, a radio frequency receiver may distinguish or discriminate the seat belt information of different seat belt systems. In some embodiments, a radio frequency device is a transponder that receives a signal and responds with a signal. In yet other embodiments, a radio frequency device is a transmitter that transmits a signal during a predefined time period, in coordination with a duty cycle, or constantly. In some embodiments, a first radio frequency device and a second radio frequency device may be of different types.
The radio frequency receiver 207 is configured to detect a particular spatial relationship between the first 205 and second 206 radio frequency devices. The particular spatial relationship between the first 205 and second 206 radio frequency devices may indicate that the buckle 203 and the tongue 204 are properly fastened together. Alternatively, the particular spatial relationship between the first 205 and second 206 radio frequency device may indicate other conditions of the seat belt system 201. In one embodiment, the particular spatial relationship indicates that the webbing 202 is placed behind a passenger while the buckle 203 and the tongue 204 are fastened together. In an alternative embodiment, the particular spatial relationship indicates that the buckle 203 and the tongue 204 while being near one another are not properly engaged. In other embodiments, various proximities may indicate other types of misuse such as the buckle 203 being disengaged from the tongue 204 while the vehicle is moving.
The detection may be accomplished in a variety of different ways. In one embodiment, the particular spatial relationship of the first 205 and second 206 radio frequency devices is determined by the strength of each individual signal transmitted or reflected by the first 205 and second 206 radio frequency devices. A calculation from these strengths may be performed to determine their approximate position relative to the radio frequency receiver 207 and to one another. In another embodiment, an alteration of each signal transmitted or reflected by the first 205 and second 206 radio frequency devices because of movement within the vehicle is detected by the radio frequency receiver 207, and calculations may be performed based on these alterations to determine the approximate location of the first 205 and second 206 radio frequency devices relative to the radio frequency receiver 207 and to one another.
In yet other embodiments, the radio frequency receiver 207 interrogates or “pings” each of the first 205 and second 206 radio frequency devices. In such an embodiment, the first radio frequency device 205 responds to the radio frequency receiver 207 with a signal. Similarly, the second radio frequency device 206 responds to the radio frequency receiver 207. In some embodiments, each of the signals from the first radio frequency device 205 and the second radio frequency device 206 interact with one another to create a single detectable signal. In some embodiments, when the first 205 and second 206 radio frequency devices are sufficiently close to one another, a particular “unique” signal or range of “uniquely” identifiable signals is created and detected by the radio frequency receiver 207, thereby indicating that the first 205 and second 206 radio frequency devices are close to one another. In other embodiments, when the first 205 and the second 206 radio frequency devices are sufficiently close to one another, the signal from the first 205 and the second 206 frequency devices cancel each other out. Accordingly, the radio frequency receiver 207 detects the cancellation of the signals previously transmitted or reflected by the first 205 and second 206 radio frequency devices and determines that the first 205 and second 206 radio frequency devices are close to one another.
In yet other embodiments, when the first 205 and second 206 radio frequency devices are sufficiently close to one another, each signal from the first 205 and second 206 radio frequency devices may individually characteristically alter the signal of the other, or in the alternative only one of the two signals characteristically alters the other signal. Accordingly, the radio frequency receiver 207 detects the alteration of either signal or both signals previously transmitted or reflected by the first 205 and second 206 radio frequency devices and determines that the first 205 and second 206 radio frequency devices are close to one another. In further embodiments, when the first 205 and second 206 radio frequency devices are sufficiently close to one another, each signal from the first 205 and second 206 radio frequency devices may mask the signal of the other, or in the alternative only one of the two signals masks the other signal. Accordingly, the radio frequency receiver 207 detects the masking of either signal or both signals previously transmitted or reflected by the first 205 and second 206 radio frequency devices and determines that the first 205 and second 206 radio frequency devices are close to one another. In yet further embodiments, when the first 205 and second 206 radio frequency devices are sufficiently close to one another, each signal from the first 205 and second 206 radio frequency devices may individually interrupt the signal of the other, or in the alternative only one of the two signals interrupts the other signal. Accordingly, the radio frequency receiver 207 detects the interruption of either signal or both signals previously transmitted or reflected by the first 205 and second 206 radio frequency devices and determines that the first 205 and second 206 radio frequency devices are close to one another.
Each of these signal alterations or combinations may be accomplished through various types of radio frequency interference. Further, each of these embodiments may be implemented with a variety of different radio frequency devices as previously discussed.
Some embodiments related to
Here, the signal of the radio frequency device 601 is only altered within the zone of active signal alteration 603. The seat belt system tongue 204 is shown as properly engaged with the buckle 203, indicating the system is buckled. Accordingly, in this embodiment when the radio frequency receiver (not shown in FIG.) detects an altered signal of the radio frequency device 601, the system is buckled. When the radio frequency receiver (not shown in FIG.) does not detect an altered signal of the radio frequency device 601, the system is unbuckled as the radio frequency device 601 is not within the zone of active signal alteration 603.
In other embodiments, the zone of signal alteration 603 may be other regions not proximate to the buckle 203 of the seat belt system 201. Accordingly, the system operates in an opposite fashion where detection of an altered signal by the radio frequency receiver (not shown in FIG.) indicates the seat belt system 201 is not buckled properly, and the detection of an unaltered signal by the radio frequency receiver (not shown in FIG.) indicates the seat belt system 201 is buckled properly.
In some embodiments, the radio frequency altering device 604 may be used for a first seat belt system 201 with a first radio frequency device 601, and for a second seat belt system 213 with a second radio frequency device 602. In other embodiments, there are two radio frequency altering devices to be employed separately for each of the first 201 and second 213 seat belt systems. Additionally, the radio frequency altering device 604 may be employed with multiple radio frequency devices for a single seat belt system. Further, the alteration of the signals by the radio frequency altering device 604 may be any variety of alterations as previously discussed with respect to the embodiment of
The detection of an altered or unaltered signal from the radio frequency device 602 by the radio frequency receiver (not shown in FIG.) may indicate that the buckle 203 and the tongue 204 are properly fastened together. Alternatively, the detection of an altered or unaltered signal may indicate other conditions of the seat belt system 201. The detection of an altered or unaltered signal may indicate that the webbing 202 is placed behind a passenger while the buckle 203 and the tongue 204 are fastened together. The detection of an altered or unaltered signal may indicate that the buckle 203 and the tongue 204 while being near one another are not properly engaged. In other embodiments, various altered and unaltered signals may indicate other types of misuse such as the buckle 203 being disengaged from the tongue 204 while the vehicle is moving.
Some embodiments related to
In
The detection of the signal or alteration of the signal from the radio frequency device 702 by the radio frequency receiver (not shown in FIG.) may indicate that the buckle 203 and the tongue 204 are properly fastened together. Alternatively, the detection of the signal or alteration of the signal may indicate other conditions of the seat belt system 201. The detection of the signal or alteration of the signal may indicate that the webbing 202 is placed behind a passenger while the buckle 203 and the tongue 204 are fastened together. The detection of the signal or alteration of the signal may indicate that the buckle 203 and the tongue 204 while being near one another are not properly engaged. In other embodiments, various detected signals may indicate other types of misuse such as the buckle 203 being disengaged from the tongue 204 while the vehicle is moving.
Some embodiments related to
The present system provides a wireless seat belt monitoring system. The system eliminates conventional wires between each seat belt system of a vehicle and the restraint control module of the vehicle. Also, it is known that current restraint control modules have limited capacity to accept inputs, and likely would not be able to accommodate all of the inputs required if all seat belt buckles in a large SUV or van included wired seat belt monitoring systems. Similarly, the present system is advantageous when applied to school busses that incorporate a large number of seat belt systems. The wireless aspect of the present system allows for simple integration of seat belt monitoring systems into a school bus which would otherwise be substantially more difficult with any variation of a wired seat belt monitoring system.
The present system is also applicable to rear seating systems that are removable, or “tumble,” or have some relative motion to the vehicle for purposes of utility or convenience. The wireless aspect of the present system allows a user to easily remove and replace, or move a seat without having to disconnect and reconnect any wires. The present system additionally reduces the cost and complexity of seat belt monitoring systems by avoiding unique routing of wires out of the way of possible pinch points, avoiding the addition of more robust insulation, and avoiding the addition of outer protection against the potential wear or damaging of wires due to continued relative motion and continued contact with moving parts. The present system further reduces power consumption required to detect seat belt use.
The present application claims the benefit of and priority to U.S. Provisional Patent Application No. 60/996,964, filed Dec. 12, 2007. The foregoing provisional application is incorporated by reference herein in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
3874474 | Quantz | Apr 1975 | A |
4015236 | Boudeville | Mar 1977 | A |
5520263 | Suran et al. | May 1996 | A |
6024382 | Baumann | Feb 2000 | A |
6025783 | Steffens, Jr. | Feb 2000 | A |
6184785 | Midorikawa | Feb 2001 | B1 |
6362734 | McQuade et al. | Mar 2002 | B1 |
6531964 | Loving | Mar 2003 | B1 |
6618022 | Harvey | Sep 2003 | B2 |
6750764 | Henninger | Jun 2004 | B1 |
6809640 | Sherman | Oct 2004 | B1 |
7002457 | Stevenson et al. | Feb 2006 | B2 |
7005976 | Hagenbuch | Feb 2006 | B2 |
7271712 | Rubel | Sep 2007 | B2 |
7321306 | Lee et al. | Jan 2008 | B2 |
7340809 | Tracy et al. | Mar 2008 | B2 |
7642907 | Tang et al. | Jan 2010 | B2 |
20030160689 | Yazdgerdi | Aug 2003 | A1 |
20040066291 | Tracy | Apr 2004 | A1 |
20050061568 | Schondorf et al. | Mar 2005 | A1 |
20060103516 | Zang | May 2006 | A1 |
20060139159 | Lee et al. | Jun 2006 | A1 |
20060176158 | Fleming | Aug 2006 | A1 |
20070096891 | Sheriff et al. | May 2007 | A1 |
20070139173 | Tang et al. | Jun 2007 | A1 |
20070139185 | Nathan et al. | Jun 2007 | A1 |
20070139216 | Breed | Jun 2007 | A1 |
20070182535 | Seguchi | Aug 2007 | A1 |
20070205884 | Federspiel et al. | Sep 2007 | A1 |
20070221428 | Strutz et al. | Sep 2007 | A1 |
Number | Date | Country | |
---|---|---|---|
20090160616 A1 | Jun 2009 | US |
Number | Date | Country | |
---|---|---|---|
60996964 | Dec 2007 | US |