Not Applicable.
1. Field of the Invention
The present invention relates generally to a seat belt system for restraining an occupant of a vehicle and, more particularly, to a D-ring used to attach the shoulder portion of a seat belt in an automobile body assembly.
2. Description of Related Art
One type of seat belt system connects at three places to the vehicle body and incorporates both a lap belt section and a shoulder belt section to restrain movement of an occupant should sudden vehicle deceleration occur, for example a collision. The seat belt extends upward from a seat belt retractor, typically anchored to the vehicle body, to and through a D-ring, anchored to the vehicle body. The seat belt extends across the occupant's body and with a tongue received in a buckle securing the seatbelt in place.
Various types of seat belt retractors are commonly used. One type of seat belt retractor includes a spool or reel including a torsion spring used to wind up and store the webbing of a seat belt. Some retractors use a motor that operates to wind and unwind the seat belt. As the seat belt is withdrawn or unwound from the spool or reel, it passes over the D-ring. Upon retraction, the seatbelt moves again over the D-ring in the opposite direction.
The seat belt retractor provides sufficient force to retract the seat belt through the D-ring until it reaches a fully withdrawn position. To fasten the seat belt, the vehicle occupant exerts a force that overcomes the retraction force whereby the occupant can withdraw or pull the seat belt out of the seat belt retractor, over the D-ring, across the occupant's body and place the tongue in the buckle. Once buckled the seat belt retractor exerts a certain retraction force to remove any slack from the seat belt, which depending upon the severity of the retraction force, may cause a feeling of confinement.
Reducing the retraction force needed to pull the seat belt back into the seat belt retractor and wind the seat belt around the spool reduces the pressure felt by the vehicle occupant during use.
An embodiment of the present invention provides a D-ring and seat belt for use with a seat belt assembly of a motor vehicle. The D-ring includes a magnet and the seat belt includes a plurality of metal filaments. The magnet and plurality of metal filaments act together to counteract at least a portion of the force needed to draw the seat belt over the D-ring. In one example of the present embodiment, the magnet is positioned over or above the seatbelt and provide an attraction force that counteracts at least a portion of the normal force of the seat belt on the D-ring caused by gravity.
Further areas of applicability of the present invention will become apparent from the detailed description provided hereinafter. It should be understood that the detailed description and specific examples, while indicating the preferred embodiment of the invention, are intended for purposes of illustration only and are not intended to limit the scope of the invention.
The present invention will become more fully understood from the detailed description and the accompanying drawings, wherein:
The following description of the preferred embodiment(s) is merely exemplary in nature and is in no way intended to limit the invention, its application, or uses.
In the present example, the seat belt 14 is of a type having a bag-in-tube design; with an airbag 48, see
As illustrated
The flange 32 extending adjacent the opening 30 includes a guide surface 34. The guide surface 34 having an arcuate configuration or curvature to facilitate movement of the seatbelt over the guide surface 34. The curvature and the length of the guide surface 34 configured for each specific use. Further, increasing the size or length of the guide surface 34 correspondingly increases the width and the packaging constraints of the D-ring 16. The width, that is the distance between the respective ends of the flange 32 on the front and rear faces 25, 27, maybe limited depending upon the vehicle in which the D-ring 16 is used.
The top portion 36 of the body 22 includes an attachment portion 38 that includes an aperture 40 used to pivotally attach the D-ring 16 to the vehicle or vehicle frame. In the present example, the body 22 also includes a cover 42; see
The seatbelt 14 travels over the guide surface 34 when pulling the seatbelt 14 from the retractor or drawing the seatbelt back into the retractor. When traveling over the guide surface 34 the tubular portion 44 of the shoulder portion 46 of the seatbelt 16 containing the airbag 48 bunches upon entering and exiting radial turns; for example when traveling around or pulled over an arcuate surface having a tight radius. To combat and overcome the tendency to bunch, the D-ring 16 according to one example of the present invention includes a magnet 50 housed on or in a portion of the D-ring 16 opposite the guide surface 34. The seat belt 14 includes a plurality of metal fibers or filaments 54 in or attached to the webbing of the seat belt 14. As illustrated the shoulder portion 46 of the seat belt 14 includes metal fibers or filaments 54 on the interior surface 56, 58 of the front and rear surfaces 46A, 46B of the shoulder portion 46. The metal fibers or filaments 54 extend along the longitudinal axis of the shoulder portion 46. The magnet 50 acts on the metal fibers or filaments 54 in the shoulder portion 46 of the seat belt 14 to counteract the normal force on the D-ring 16 applied by gravity.
In the example of the present invention, the magnet 50 is in a groove or channel 60 formed by an upper portion 62 of the flange 32. Positioning the magnet 50 opposite and spaced from the guide surface 34 enables it to act on the metal fibers or filaments 54 in the shoulder portion 46 of the seat belt 14 to lift the shoulder portion 46 of the seat belt 14 as it travels through the D-ring 16. Lifting the shoulder portion 46 negates adverse effects related to bunching when the shoulder portion 46 containing the airbag 48 is drawn over the D-ring 16.
As illustrated, the magnet 50 in
The description of the invention is merely exemplary in nature and, thus, variations that do not depart from the gist of the invention are intended to be within the scope of the invention. Such variations are not to be regarded as a departure from the spirit and scope of the invention.
Number | Name | Date | Kind |
---|---|---|---|
7032929 | Stanley et al. | Apr 2006 | B2 |
7092744 | Rodemer et al. | Aug 2006 | B2 |
7104570 | Hearn et al. | Sep 2006 | B2 |
7273232 | Fontecchio et al. | Sep 2007 | B2 |
7806439 | Clute | Oct 2010 | B2 |
8870225 | Han | Oct 2014 | B2 |
20050127660 | Liu | Jun 2005 | A1 |
20060208471 | Sundararajan et al. | Sep 2006 | A1 |
20070108755 | Jones | May 2007 | A1 |
20070138783 | Gleason et al. | Jun 2007 | A1 |
20090008919 | Mather et al. | Jan 2009 | A1 |
20090256337 | Pan | Oct 2009 | A1 |
Number | Date | Country |
---|---|---|
680723 | Feb 2007 | KR |
100680723 | Feb 2007 | KR |
Entry |
---|
David Dubois, Paul Silverthorne, Eric Markiewicz, “Assessment of Seat Belt Webbing Bunching Phenomena,” International Journal of Impact Engineering, vol. 38, Issue 5, May 2011, pp. 339-357. |
Number | Date | Country | |
---|---|---|---|
20150251626 A1 | Sep 2015 | US |