The present invention relates to seating systems in passenger cabins for airliners and the like, and more particularly to seat identification systems for the passenger cabins.
Many types and locations of labels and indicators have been utilized by various aircraft manufacturers and airliners to assist the passengers in finding their assigned seats on the airplane. Typical systems create a correspondence between the seat row along the length of the fuselage of the aircraft and the seat letter which is horizontally transverse to the longitudinal direction of the length of the aircraft. The same information is typically printed on the passenger's boarding pass. Although such systems have been in use for some time, they still have a tendency to produce passenger anxiety and confusion, particularly for passengers who fly infrequently, and can result in higher workload for the airline attendants. In this regard, it is not uncommon for passengers to end up in the wrong seat and have to move, causing further inconvenience and delay in the boarding of the aircraft.
There are several disadvantages to current systems. The diagrams typically located on the signage are often hard to interpret. Also, the signage is typically non-lighted, which can create confusion in a dark or dimly lit passenger cabin. Moreover, the signage may be ambiguously placed on an overhead location, creating confusion for the passengers to actually identify their correct rows. Finally, the signage typically provides little guidance as to the precise seat to which the passenger is assigned.
It is an object of the present invention to provide an improved seat identification system for passengers, particularly on commercial airliners. It is also an object of the present invention to provide a seat identification system that more clearly communicates seat locations to the passengers. It is a still further object of the present invention to provide a seat identification system that integrates with the aircraft architecture and also allows modifications of the interior configuration of the aircraft, such as seat pitch changes, classification changes, and aircraft architecture changes.
It is a still further object of the present invention to provide a seat identification system that meets airline requirements and also effectively reduces passenger anxiety, wrong seat occupancy, and attendant workload. It is an additional object of the present invention to provide a seat identification system that meets minimum requirements of cost and weight, as well as maintains the ability to reconfigure the aircraft interior where necessary.
In accordance with the present invention, an improved seat identification system is provided for a commercial passenger aircraft, particularly for a twin-aisle passenger aircraft, which meets the above objectives. These aircraft have outboard stowage/storage bins, and typically also have centerline (inboard) bins above the central rows of seats.
In accordance with the present invention, a seat identification system is provided which provides information to the passengers in various manners, beginning with broad aisle signage and ending with a specific seat address. The aisle signs are marked and provide the first directional lead toward the appropriate seat. The aisle indication also indicates the seat letter which will lead passengers down the correct aisle. The aisle markers can be positioned at various locations throughout the airplane, typically adjacent the passenger ingress doorways.
Along the aisles, additional signage is provided in the form of “mile” markers spaced at regular intervals, for example, five or ten rows apart. The markers are positioned to be viewed in crowded situations from both forward and aft directions and also are designed to integrate with the airplane architecture. These markers can provide passenger information as to the total number of rows in the cabin, as well as a general location of their particular row in the airplane.
The inventive system also provides more specific individual row markers adjacent each group of seats. The row markers can be positioned, for example, in the passenger service units (PSUs). For this purpose, viewing channels can be inset into the PSUs to make the information more readable and accessible.
Seat markers are also positioned on each of the seats in the passenger compartments. This allows the passengers to correctly identify the specific seats to which they have been assigned. The seat markers can be located on the headrest of each of the seats.
With the present invention, the new seat identification system more clearly communicates the seat locations to the passengers, integrates appropriately to the aircraft architecture, and allows for airline interior configuration modifications without diminishing the ability of the system to communicate the appropriate seat and seat location to the passengers.
In accordance with a preferred embodiment of the invention, four signage components or markers are positioned throughout the airplane in a particular configuration that allow the passengers to receive information about their assigned seat in a better, faster, and more accurate manner. The four signage components or markers are referred to herein as aisle signage markers 20, internal row markers or “mile” markers 30, individual row markers 40 and seat markers 50. With the present invention, the passenger receives information when boarding or moving about the airplane in “chunks,” that is, the passenger is provided with various items of information which when taken in sequence and compiled together, provide easy reference and guidance to his or her seat. The information begins with broad aisle signage and ends with a specific seat address.
In accordance with a preferred embodiment of the invention, the aisle signage markers 20 are marked preferably by letters rather than numbers and are provided for viewing by the passengers as they first enter the aircraft.
A plurality of passenger service unit (PSU) modules 36 are attached to the outer walls or attachment means of the airplane between the storage bins 28 and the walls 38 of the fuselage in which the windows 26 are positioned. The PSU modules contain the lights for the passenger, air nozzles, emergency masks, attendant call buttons, and the like. Positioned immediately above the outboard storage/stowage bins 28 are the environmental control system (ECS) modules 42. The ECS modules are positioned adjacent the ceiling panels 44. The ECS modules include the main passenger lighting, auxiliary air systems and the like.
As indicated, the aisle signage markers 20 are marked by letters and are the first directional lead that the passengers encounter as they board the airplane and would lead them toward their specific seat. By choosing the aisle that corresponds to the seat letter on the passenger's boarding pass, the aisle signage markers will lead the passenger down the correct aisle. For example, with reference to the aisle signage marker 20 as shown in
The aisle signage markers 20 are capable of being used in different locations through the plane. The aisle signage markers can be, for example, snap-fit assemblies back lit by multicolored LEDs with options for providing variable color and intensity.
After entering the correct aisle, the next visible signage for the passengers are the interval row markers or “mile” markers which are spaced at short intervals throughout the aircraft. For example, as shown in
The mile markers preferably are positioned at a considerable height above the passenger seats 25 so that the markers are readable in crowded situations from both forward and aft directions. The mile markers also preferably integrate with the architecture of the passenger compartment 10 in the aircraft. Mile markers 30 help reduce boarding time, visual pollution, and user anxiety. The mile markers quickly give the passengers information as to the total number of rows, as well as the general location of their particular row in the airplane.
The mile marker or interval row markers 30 preferably are LED side-lit signs and are located above the outboard storage/stowage bins where the ECS modules meet the ceiling 44.
The interval row markers or mile markers 30 indicate groups of seats to the passenger. As an example, seat 28C would be located between markers 25 and 35 in
Once the passengers have reached their seat group, the more specific, individual row markers 40 become visible. Preferably, the row markers 40 are positioned in the PSU modules. By being located within the PSU modules, the row signage will always be located relative to a certain row of seats since the PSU module must be relocated with the seat if the seat pitch is changed.
In order to eliminate visual pollution and possible interference with the heads of the passengers, the individual row markers 40 preferably are positioned to blend in smoothly with the architecture of the aircraft. In this manner, a viewing channel 46 is inset into the PSU module 36 making the individual row markers 40 visible from the aisle in that respective row. The surface of the inset channel 46 can provide space for other passenger accessories, such as call lights 52 and reading lamps 54. The row lighting can also be activated by activating the attendant's call button. This would reduce visual pollution while remaining easily visible by the passengers or flight attendants when needed.
In one preferred embodiment, the individual row markers 40 comprise a co-molded lens back-lit by RGB LEDs inlaid into a molded housing. The row markers are preferably made of an opaque material and are attached directly into the PSU module for easy reconfiguration and visual interpretation. Similar row markers and viewing channels are positioned in the inboard PSU modules (not shown) which are positioned adjacent the inboard storage/stowage bins 32.
The seat markers 50 provide the final information necessary for the passenger to locate his or her specific seat. The seat markers 50 are preferably positioned on the headrests 56 of the passenger seats 25. Each seat marker 50 is slightly angled and positioned flush to the seats. This allows the marker to be seen easily from the aisle and keeps the seat markers from becoming visually distracting.
Preferably, the seat markers 50 consist of a plastic housing and interchangeable snap-fit inserts for easy reconfiguration. The seat markers 50, typically located at A, B, C, etc. provide the passenger with a positive seat address and should reduce wrong seat occupancy. Depending on the size and boldness of the font used for the various markers 20, 30, 40 and 50, a more effective hierarchy of signage is provided which guides the passengers from the time they board the airplane to the time they sit in their assigned seats.
The invention provides guidance to the seat in a quick and relatively easy manner and also significantly reduces boarding time. With the present invention, all of the various markers are visible to passengers regardless of whether the outboard/inboard storage/stowage bins are opened or closed. The seat identification system also is functional regardless of whether inboard storage/stowage bins are provided. The system thus works independently of the storage/stowage bins.
The seat identification system also can be easily understood by the passengers. Passengers should easily be able to understand the seat identification system, regardless of their culture, gender, age, flight experience, or the like. The inventive system clearly enables the passenger and the flight crew to identify the correct row and seat. The system is easily usable by passengers with disabilities. The system also provides seat identification even when the seats on the airplane are moved about or the seating arrangement is reconfigured.
The present invention is also usable in all ambient light conditions. If the markers are lit, the seat identification system provides the ability of the passenger and crew to find specific seats at night or in low light level conditions. The markers are also relatively inconspicuous except when they are needed.
While the invention has been described in connection with one or more embodiments, it is to be understood that the specific mechanisms and techniques which have been described are merely illustrative of the principles of the invention, numerous modifications may be made to the methods and apparatus described without departing from the spirit and scope of the invention as defined by the appended claims.