Seat module for a mining vehicle

Information

  • Patent Grant
  • 8985263
  • Patent Number
    8,985,263
  • Date Filed
    Tuesday, March 1, 2011
    13 years ago
  • Date Issued
    Tuesday, March 24, 2015
    9 years ago
Abstract
A mining shuttle car that trams on underground roadways includes a conveyor system and an operator's compartment adjacent to the conveyor system. The operator's compartment includes a rotatable seat and a control station. The operator's seat module is coupled to one or more joysticks that control the car, and the operator's seat module and the control station are mounted on a rotatable platform so as to be rotatable as a unit between a plurality of secured positions for operating the mining shuttle car. Forward movement of the joystick control relative to the seat steers the shuttle car about a point in front of the seat, and rearward movement of the joystick control relative to the seat steers the shuttle car about a point behind the seat. Forward and rearward movement of one of the joysticks steers the mining shuttle car in the same manner regardless of the rotational position of the rotational position of the seat.
Description
BACKGROUND

It is common in underground mining to use shuttle cars that tram on underground roadways. The underground roadways are typically limited in width, and there can be insufficient space for the shuttle cars to turn around. Thus, the shuttle cars tram forward when proceeding in one direction along a roadway, and rearward when proceeding in the opposite direction along the road. The role of the shuttle cars is to efficiently remove the cut material from the working face. To this end, a shuttle car typically employs a heavy-duty, high-power drive train that enables it to haul loads in arduous conditions.


SUMMARY

In some embodiments, a seat module is provided for a mining shuttle car that includes a loading end, a discharge end, and a conveyor extending between the loading end and the discharge end. The seat module includes an enclosure, a rotatable platform positioned within the enclosure, and a seat supported by the rotatable platform and rotatable therewith between a first secured position facing generally toward the loading end, a second secured position facing generally toward the discharge end, and at least one secured position between the first and second positions.


In other embodiments, a mining shuttle car includes a loading end, a discharge end, and a conveyor system extending between the loading end and the discharge end. A seat module is positioned adjacent the conveyor system and includes a rotatable seat. The seat is rotatable between a first secured position facing generally toward the loading end, a second secured position facing generally toward the discharge end, and at least one secured position between the first and second positions.


In still other embodiments, a method of operating a mining shuttle car is provided and includes rotating a seat to any one of a plurality of secured positions, tramming in a first direction and pushing a joystick control away from the seat to turn left and pulling the joystick control toward the seat to turn right, and tramming in a second direction opposite the first direction and pushing the joystick control away from the seat to turn right and pulling the joystick control toward the seat to turn left.


In still further embodiments, a mining shuttle car includes a loading end, a discharge end, and a conveyor system extending between the loading end and the discharge end. A seat module is positioned adjacent the conveyor system and includes a seat facing generally toward the conveyor system. The seat includes a joystick control coupled to the seat and operable to steer the mining shuttle car. The mining shuttle car is configured such that forward movement of the joystick control relative to the seat steers the shuttle car about a point in front of the seat, and rearward movement of the joystick control relative to the seat steers the shuttle car about a point behind the seat.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a perspective view of a mining shuttle car that includes an operator's compartment.



FIG. 2 is a side view of the operator's compartment of FIG. 1.



FIG. 3 is a top view of the operator's compartment of FIG. 1 with a canopy removed.



FIG. 4 is a plan view of a control station in the operator's compartment of FIG. 1.



FIG. 5 is a perspective view of an operator's seat module from the operator's compartment of FIGS. 1-3.



FIG. 6 is a side view of the operator's seat module of FIG. 5.



FIG. 7 is a plan view of a left joystick of the operator's seat module of FIGS. 5 and 6.



FIG. 8 is a plan view of a right joystick of the operator's seat module of FIGS. 5 and 6.



FIG. 9 is a perspective view of a foot-pedal control of the operator's seat module of FIGS. 5 and 6.



FIG. 10 is a schematic representation of an operator executing a right turn when the shuttle car is traveling in the direction of its loading end.



FIG. 11 is a schematic representation of an operator executing a left turn when the shuttle car is traveling in the direction of its loading end.



FIG. 12 is a schematic representation of an operator executing a left turn when the shuttle car is traveling in the direction of its discharge end.



FIG. 13 is a schematic representation of an operator executing a right turn when the shuttle car is traveling in the direction of its discharge end.





It should be understood that the invention is not limited in its application to the details of construction and the arrangements of the components set forth in the following description or illustrated in the above-described drawings. The invention is capable of other embodiments and of being practiced or being carried out in various ways. Also, it is to be understood that the phraseology and terminology used herein is for the purpose of description and should not be regarded as limiting.


DETAILED DESCRIPTION


FIG. 1 is a perspective view of a mining shuttle car 10 generally of the type used for maneuvering in underground roadways during mining operations. The mining shuttle car 10 includes an operator's compartment or cab 12 and a plurality of wheels 14 that support the shuttle car 10 on a roadway surface. A cable reel 13 reels in and pays out cable that connects to nearby plug-in stations along the underground roadway and supplies power to the shuttle car 10. The shuttle car 10 defines a loading end 17 where the mined material is loaded, and a discharge end 19 where the material is discharged. A central channel 15 includes a conveyor system 18 that extends between the loading and discharge ends 17, 19. In the illustrated construction, the operator's compartment 12 is positioned adjacent to the conveyor system 18 near the discharge end 19 of the shuttle car 10.


In underground mining, the shuttle car 10 is powered through the cable 16 and moves or “trams” forwardly and rearwardly along the roadway. During typical operation, the operator maneuvers the car 10 such that the loading end 17 is positioned proximate a working face of the mine, where mined material can be loaded onto the conveyor system 18. Once sufficient material has been loaded, the operator maneuvers shuttle car 10 away from the working face to another location, where the loaded material can be discharged via the conveyor system 18. Because underground roadways frequently are very narrow, the shuttle car 10 is designed so that it need not turn around. Material can be loaded and/or discharged from either the loading end 17 or the discharge end 19, and the shuttle car 10 can tram in either direction.


With reference also to FIGS. 2-3, in one embodiment, the operator's compartment 12 defines an enclosure that can be entered through either of two angled doors 20, 21. The door 20 generally faces toward the loading end 17 and the door 21 generally faces toward the discharge end 19. Both doors can be hinged on upright 24. The use of two angled doors 20, 21 can allow an operator to enter or exit the cab 12 in either direction or from any seated position. Other embodiments may include a single door or more than two doors.


The operator's compartment 12 can further include a canopy 22 supported by the upright 24 and a pair of support posts 25. In some embodiments, the posts 25 are mounted to a side of the shuttle car 10, and the upright 24 mounted to an outside wall of the operator's compartment 12. In some embodiments the height of the canopy 22 can be adjusted to allow the operator additional headroom. One or more flexible handles 26 can be disposed on the canopy 22. The operator's compartment 12 also includes a rotatable operator's seat module 28, described further below, a control station 30, and video monitors 31. In some embodiments, the operator's compartment 12 can be pre-assembled as a unit. In this way, the operator's compartment 12 can be installed onto new shuttle cars 10 at final assembly, or retrofitted to shuttle cars.


Referring to FIG. 4, the control station 30 can accommodate controls 32 and a diagnostics display 34. For example, the controls 32 in some embodiments can include one or more of the following: a head-light switch 36 to turn head lights on or off or turn the head lights on automatically when needed, an earth-leak test button 38, a button 40 to go back on the diagnostics display menu or reset the display, a button 42 to select a diagnostics display menu or reset the display, an emergency stop bar 44, a button 46 to move up on the diagnostics display menu, a button 48 to move down on the diagnostics display menu, an emergency brake release switch 50 to momentarily release a parking brake (not shown), and a pump switch 52 to start, run, or switch off a pump on the shuttle car 10. In some embodiments, the park brake release 50 can energize a solenoid to release one or more parking brakes. The control station 30 can also include controls to start up and shut down the shuttle car 10. Although FIG. 4 illustrates the controls 32 arranged in a particular manner, it is to be appreciated that other embodiments may utilize a different arrangement of controls 32. As a further alternative, certain controls illustrated distinctly in FIG. 4 can be combined into a single button or switch. In the illustrated embodiment, the diagnostics display 34 is disposed at the center of the control station 30, and a video monitor 31 is positioned adjacent each side of the control station 30. Other arrangements of the diagnostics display 34, control station 30, and video monitors 31 may also be used.


Referring also to FIGS. 5 and 6, the operator's seat module 28 includes an operator's seat 54 and a pair of foot-pedal controls 56, 57. In the illustrated construction, the left-side foot-pedal control 57 operates the brake, and the right-side foot-pedal control 56 operates the drive system for tramming the shuttle car 10 in the direction of either the loading end 17 or the discharge end 19. In this regard the pedals 56, 57 are arranged in the traditional “gas is on the right, brake is on the left” configuration. Both the operator's seat 54 and foot-pedal controls 56, 57 are mounted on a rotatable platform 58 so as to be rotatable as a unit within the operator's compartment 12. Rotating the seat module 28 can be accomplished by means of mechanical, hydraulic, pneumatic, or electric systems depending upon the capabilities and configuration of the shuttle car to which the operator's compartment 12 is attached. In the illustrated embodiment, a drum 59 (see FIG. 6) is positioned below the platform 58 and can be rotated by, for example, hydraulic, pneumatic, or electrical motors (not shown) drivingly coupled to the drum 59 by belts and pulleys, gear systems, or combinations thereof. Other embodiments may utilize hydraulic cylinders or other linear actuators coupled to an outer portion of the platform 58 that extend and retract to rotate the platform 58. A release mechanism (not shown) may be incorporated to allow manual rotation of the platform 58 when power is not available or if there is a malfunction in any of the components that provide automated rotation of the platform 58.


In some embodiments, the platform 58 can rotate through a total of about 120 degrees so that the operator can position the seat 54 generally in either direction of travel. For example, in the illustrated embodiment, when centered the platform 58 and operator's seat 54 are positioned at a substantially right angle with respect to the conveyor system 18. The platform 58 and operator's seat 54 can then be rotated approximately 60 degrees to either side as desired by the operator. Other rotational positions are possible depending on the usage requirements or preferences for the particular shuttle car 10 or particular operator. In some constructions, there are a substantially infinite number of rotational positions in which the seat 54 can be secured.


In some embodiments, the operator's seat 54 can include cutouts 55 that accommodate a self-rescuer or battery pack (generally worn by the operator), an adjustable headrest 63, an adjustable seat back, a seat belt, and armrests 65. Right and left side joysticks 60, 61 for controlling the shuttle car 10 and the platform 58 are positioned proximate the ends of respective armrests 65. A seat base 67 is coupled to the platform 58 and supports the seat 54. The seat base 67 includes slides, linkages, guides, and the like that allow the operator to adjust the height and distance of the seat 54 relative to the foot-pedal controls 56, 57. The seat base 67 may also be configured to adjust the relative position of the seat 54 with respect to the arm rests 65.


Referring also to FIGS. 7 and 8, the right and left joysticks 60, 61 include controls in the form of buttons and switches for operating the shuttle car 10 and the platform 58. In some embodiments, the right-hand joystick 60 can include one or more of the following: a button 62 to actuate the flash or horn, a tram-direction switch 64 for setting the tram direction of the shuttle car 10, and a button 66 for rotating the platform 58 to the right (e.g., clockwise when viewed from above). Moreover, in the illustrated embodiment, the right-hand joystick 60 is moveable fore and aft in an elongated slot 69 (see FIG. 5) for steering the shuttle car 10, as discussed below. In the illustrated construction, the tram-direction switch 64 is a rocker-type switch having right and left portions, one of which is depressed and thus “active” or “on” at any point in time. Other types of switches may also be used to select the direction in which the car 10 will travel.


The left-hand joystick 61 can include a button 68 for rotating the platform 58 to the left (e.g., counterclockwise when viewed from above), a switch 70 for raising or lowering the conveyor system 18, and a button 72 to load or discharge the conveyor 18. In some embodiments, the right and left joysticks 60, 61 also each include a trigger 71, 73 (see FIG. 6 for trigger 73 on the left joystick 61). To reduce the potential for unwanted rotation of the platform 58, for example, when an operator is entering or exiting the operator's compartment, rotation of the platform 58 to the right may require the simultaneous pulling of the left joystick 61 trigger 73 and pressing of the right joystick 60 button 66. Similarly, rotation of the platform 58 to the left may require simultaneous pulling of the right joystick 60 trigger 71 and pressing of the left joystick 61 button 68. Generally speaking, when the operator is not in the process of rotating the seat 54 between various angular positions, the seat 54 is secured against rotation. Although FIGS. 7 and 8 illustrate the joystick controls arranged in a particular manner, it is to be appreciated that other embodiments may include a different arrangement of controls.



FIG. 9 illustrates the right-side foot-pedal control 56, the left-side foot-pedal control 57 being substantially the same. The foot-pedal control 56 includes a bracket assembly 80 coupled to the platform 58 and a pedal 82 pivotally coupled to the bracket assembly 80 by a pin 84. A torsion spring 74 surrounds the pin 84 and biases the pedal 82 generally upwardly. Positioning the torsion spring 74 above the platform 58 allows for easy serviceability. A pushrod 86 extends through an opening in the platform 58 and into a foot-switch enclosure 76, which can include sensors, solenoids, and the like for actuating the drive mechanism of the shuttle car 10 in response to operation of the pedal 82.


The right joystick 60 is used to steer or turn the shuttle car 10 in a manner intended to be natural and intuitive for the operator. Pushing or pulling the right joystick 60 along the slot 69 between fore, neutral, and aft positions turns the wheels 14 of the shuttle car 10, thus allowing the shuttle car 10 to negotiate corners. Movement of the shuttle car 10 is controlled with a combination of the tram-direction switch 64, which determines the direction in which the shuttle car 10 will travel, and the foot-pedal controls 56, 57 which control the speed at which the shuttle car 10 travels in the direction associated with the position of the tram-direction switch 64. The operation of these controls is independent of the rotational position of the platform 58. As such, regardless of whether the operator is facing at a right angle to the conveyor 18, generally toward the loading end 17, or generally the discharge end 19, steering and movement of the shuttle car 10 is controlled in the same manner. Although not necessary, operators are free to rotate the platform 58 such that they are facing generally in the direction they wish to travel.


Using the shuttle car 10 and operator's compartment 12 configuration in the drawings as an example, to travel in a straight line with the loading end 17 at the “front” of the shuttle car 10, the joystick 60 is positioned in the neutral position and the tram-direction switch 64 is operated to select the loading end 17 as the front of the shuttle car 10. In the illustrated construction, this is accomplished by depressing the right-hand portion of the tram-direction switch 64, which is closest to the loading end 17 (see FIGS. 1 and 7). The operator may then depress the right-foot pedal 56, thus activating the drive mechanism of the shuttle car 10 and moving the shuttle car 10 in the direction of the loading end 17. To travel in the opposite direction (e.g., with the discharge end 19 as the “front” of the shuttle car 10), the operator can flip the tram-direction switch 64 such that the left portion of the switch is depressed, and depress the right-foot pedal 56, thus activating the drive mechanism of the shuttle car 10 and moving the shuttle car in the direction of the discharge end 19. Although the joysticks 60, 61 and foot-pedal controls 56, 57 are arranged in a particular manner in some embodiments, it is to be appreciated that, in other embodiments, the arrangement can be different depending on the usage requirements or preferences for the particular shuttle car 10.


With reference to FIGS. 10-13, the right-hand joystick 60 can offer an intuitive control for steering the shuttle car 10. In the illustrated embodiments, by pulling the right-hand joystick 60 rearwardly and toward the seat/operator, the operator can steer the shuttle car 10 toward the same side of the underground roadway as the operator is positioned, regardless of which direction the shuttle car 10 is traveling. Similarly, by pushing the right-hand joystick 60 forwardly and away from the seat/operator, the operator can steer the shuttle car 10 toward the side of the underground roadway opposite the operator's position.


For example, as shown in FIG. 10, when the shuttle car 10 travels in the direction of the loading end 17, the operator can pull the right-hand joystick 60 rearwardly to steer the shuttle car 10 to the right. More specifically, in the illustrated construction having the cab 12 disposed in the illustrated location near the discharge end 19, the operator can flip the tram-direction switch 64 on the right-hand joystick 60 to the right, pull the right-hand joystick 60 rearwardly, and depress the right-foot pedal 56 to travel in the direction of the loading end 17 while executing a turn to the right.


As shown in FIG. 11, when the shuttle car 10 travels in the direction of the loading end 17, the operator can push the right-hand joystick 60 forwardly to steer the shuttle 10 to the left. More specifically, in the illustrated construction having the cab 12 disposed in the illustrated location near the discharge end 19, the operator can flip the tram-direction switch 64 to the right, push the right-hand joystick 60 forwardly, and depress the right-foot pedal 56 to travel in the direction of the loading end 17 while executing a turn to the left.


As shown in FIG. 12, when the shuttle car 10 travels in the direction of the discharge end 19, the operator can push the right-hand joystick 60 forwardly to steer the shuttle car 10 to the right. More specifically, in the illustrated construction having the cab 12 disposed in the illustrated location near the discharge end 19, the operator can flip the tram-direction switch 64 to the left, push the right-hand joystick 60 forwardly, and depress the right-foot pedal 56 to travel in the direction of the discharge end 19 while executing a turn to the right.


As shown in FIG. 13, when the shuttle car 10 travels in the direction of the discharge end 19, the operator can pull the right-hand joystick 60 rearwardly to steer the shuttle car to the left. More specifically, in the illustrated construction having the cab 12 disposed in the illustrated location near the discharge end 19, the operator can flip the tram-direction switch 64 to the left, pull the right-hand joystick 60 rearwardly, and depress the right-foot pedal 56. Again, by pulling the right-hand joystick 60 toward the operator, the operator can steer the shuttle car 10 to the same side of the underground roadway as the operator is positioned, and by pushing the right-hand joystick 60 away from the operator, the operator can steer the car 10 to the side of the underground roadway opposite the operator's position.


The above-described method of steering the shuttle car 10 can be intuitive to the operator, because by pulling the joystick 60 toward the operator, the operator can steer the car 10 to the same side of the underground roadway as to where the cab 12 is disposed, regardless of the direction the operator is facing or tramming. Similarly, by pushing the joystick 60 away from the operator, the operator can steer the car 10 to the side of the underground roadway opposite to where the cab 12 is disposed, regardless of the direction the operator is facing or tramming. Stated slightly differently, when the operator pulls on the joystick 60, the shuttle car 10 turns generally about a point that is behind the operator, such that, in the illustrated construction, the cab is positioned to the inside of the resulting turn, and when the operator pushes on the joystick 60, the shuttle car 10 turns generally about a point that is in front of the operator, such that, in the illustrated construction, the cab is positioned to the outside of the resulting turn, regardless of the direction in which the shuttle car is traveling.

Claims
  • 1. A mining shuttle car comprising: a loading end;a discharge end;a conveyor system extending between the loading end and the discharge end; anda seat module positioned adjacent the conveyor system and including a rotatable seat, the seat being rotatable between a first secured position facing generally toward the loading end, a second secured position facing generally toward the discharge end, and at least one secured position between the first and second positions, wherein the seat is freely rotatable independent of the operation of the mining shuttle car, further comprising a joystick control coupled to the seat and rotatable therewith, the joystick control operable to steer the mining shuttle car, wherein forward movement of the joystick control relative to the seat steers the shuttle car about a point in front of the seat, and rearward movement of the joystick control relative to the seat steers the shuttle car about a point behind the seat, regardless of the rotational position of the seat.
  • 2. The mining shuttle car of claim 1, further comprising foot controls coupled to the seat and rotatable therewith.
  • 3. The mining shuttle car of claim 1, further comprising a foot control rotatable with the seat.
  • 4. A method of operating a mining shuttle car having a first side and a second side opposite the first side, the method comprising: rotating a seat to any one of a plurality of secured positions;selecting a tramming direction;pushing a joystick control away from the seat to turn the mining shuttle car toward the first side regardless of seat position and tramming direction; andpulling the joystick control toward the seat to turn-the mining shuttle car toward the second side regardless of seat position and tramming direction.
  • 5. The method of claim 4, further comprising operating a foot control to tram the shuttle car in the selected tramming direction, the foot control coupled to the seat for rotation therewith.
  • 6. The method of claim 5, further comprising selecting a tramming direction with a switch mounted to the joystick control.
  • 7. A mining shuttle car comprising: a first side;a second side opposite the first side;a loading end;a discharge end;a conveyor system extending between the loading end and the discharge end; anda seat module positioned adjacent the conveyor system and including a seat rotatable to any one of a plurality of secured positions, a joystick control coupled to the seat for rotation therewith, and a switch mounted to the joystick control to select a tramming direction, wherein pushing the joystick control away from the seat turns the mining shuttle car toward the first side regardless of seat position and tramming direction, and pulling the joystick control toward the seat turns the mining shuttle car toward the second side regardless of seat position and tramming direction.
  • 8. The mining shuttle car of claim 7, further comprising a foot control to tram the mining shuttle car in the selected tramming direction, the foot control coupled to the seat for rotation therewith.
  • 9. A mining shuttle car comprising: a loading end;a discharge end;a conveyor system extending between the loading end and the discharge end; anda seat module positioned adjacent the conveyor system and including a rotatable seat, the seat being rotatable between a first secured position facing generally toward the loading end, a second secured position facing generally toward the discharge end, and at least one secured position between the first and second positions, wherein the seat is freely rotatable independent of the operation of the mining shuttle car, further comprising a joystick control coupled to the seat and rotatable therewith, the joystick control operable to steer the mining shuttle car, wherein the seat module is disposed to one side of the mining shuttle car, and wherein pulling the joystick toward the seat while tramming steers the mining shuttle car such that the seat module is positioned to the inside of the resulting turn, and wherein pushing the joystick away from the seat while tramming steers the mining shuttle car such that the seat module is positioned to the outside of the resulting turn.
  • 10. The mining shuttle car of claim 9, further comprising foot controls coupled to the seat and rotatable therewith.
  • 11. The mining shuttle car of claim 9, further comprising a foot control rotatable with the seat.
US Referenced Citations (71)
Number Name Date Kind
3522839 Wendt et al. Aug 1970 A
3776358 Williams Dec 1973 A
3868896 Doll et al. Mar 1975 A
3983715 Hair, Jr. et al. Oct 1976 A
4068728 Subrick Jan 1978 A
4120527 Lawrence Oct 1978 A
4278144 Perin Jul 1981 A
4294082 Gerboth et al. Oct 1981 A
4344356 Casterton et al. Aug 1982 A
4467706 Batcheller et al. Aug 1984 A
4480867 Ezell et al. Nov 1984 A
4492151 Mattei Jan 1985 A
4612975 Ikari Sep 1986 A
4616725 McDaniel Oct 1986 A
4771855 Takashima et al. Sep 1988 A
4846529 Tulley Jul 1989 A
5275255 Huntley et al. Jan 1994 A
5308279 Grinberg May 1994 A
5318100 Aoki Jun 1994 A
5799746 Kortelainen et al. Sep 1998 A
5890764 Lee Apr 1999 A
5992156 Isobe et al. Nov 1999 A
6012295 Isobe et al. Jan 2000 A
6022182 Everett Feb 2000 A
6039141 Denny Mar 2000 A
6095263 Saunders et al. Aug 2000 A
6186573 Thurab Feb 2001 B1
6196308 Halligan Mar 2001 B1
6220656 Martin, Jr. Apr 2001 B1
6446738 Boyd Sep 2002 B1
6543848 Suga et al. Apr 2003 B1
6557919 Suga et al. May 2003 B2
6572172 Ninomiya et al. Jun 2003 B1
6578854 Wucherpfennig et al. Jun 2003 B2
6629572 Womer et al. Oct 2003 B2
6684969 Flowers et al. Feb 2004 B1
6688682 Arthur et al. Feb 2004 B2
6729031 McKee May 2004 B2
6755270 Saarinen Jun 2004 B2
6955009 Rasmussen Oct 2005 B2
6955239 Ueda et al. Oct 2005 B2
6981746 Chung et al. Jan 2006 B2
7036883 Thompson et al. May 2006 B1
7059680 Billger et al. Jun 2006 B2
7069736 Kamimae et al. Jul 2006 B2
7083019 Chiou et al. Aug 2006 B2
7086241 Holt Aug 2006 B2
7159687 Dunn et al. Jan 2007 B2
7243982 Kelley et al. Jul 2007 B2
7294181 Smith Nov 2007 B1
7347299 Billger et al. Mar 2008 B2
7434863 Hamazaki et al. Oct 2008 B2
7520567 Billger et al. Apr 2009 B2
7575276 Henry Aug 2009 B1
7607722 Frett et al. Oct 2009 B2
7681630 Klassen et al. Mar 2010 B2
8056617 Klassen et al. Nov 2011 B2
20030070900 Elwell Apr 2003 A1
20030230447 Wulfert et al. Dec 2003 A1
20060061122 Billger et al. Mar 2006 A1
20060144634 Portscheller et al. Jul 2006 A1
20070145759 Crawford et al. Jun 2007 A1
20090218327 Beeson Sep 2009 A1
20090276122 Demong et al. Nov 2009 A1
20100126188 Clarke May 2010 A1
20100300796 Ryan et al. Dec 2010 A1
20120068478 Nania Mar 2012 A1
20120204589 Krellner et al. Aug 2012 A1
20120224941 Peterson et al. Sep 2012 A1
20130004273 Webb Jan 2013 A1
20130140092 Warr Jun 2013 A1
Foreign Referenced Citations (14)
Number Date Country
2007202415 May 2008 AU
2006243875 Jun 2008 AU
2008247324 Nov 2008 AU
2007216811 Apr 2009 AU
9204392 May 1992 DE
102006018537 Nov 2007 DE
1669225 Jun 2006 EP
1022623 Mar 1966 GB
1126449 Mar 1966 GB
2006232010 Sep 2006 JP
2010215143 Sep 2010 JP
141849 Jul 1987 PL
174838 Sep 1998 PL
WO 2009050747 Apr 2009 WO
Non-Patent Literature Citations (10)
Entry
PCT/US11/26646 International Search Report and Written Opinion dated Apr. 13, 2011 (13 pages).
PCT/US2011/026646 International Preliminary Report on Patentability and Written Opinion dated Sep. 12, 2013 (9 pages).
Search Report from the Patent Office of the Republic of Poland for Application No. P-398070 dated May 9, 2012 (2 pages).
Search Report from the United Kingdom Intellectual Property Office for Application No. 1202267.9 dated Jun. 27, 2012 (4 pages).
Buchsbaum, Foresight Energy Invests in Illinois: The Cline Group constructs four underground coal mining complexes, Coal Age, Dec. 2010, pp. 36-53.
First Patent Examination Report from the Intellectual Property Office of Australia for Application No. 2012258458 dated Oct. 10, 2013 (3 pages).
Office Action for U.S. Appl. No. 13/691,920 dated Jan. 2, 2014 (14 pages).
Second Patent Examination Report from the Intellectual Property Office of Australia for Application No. 2012258458 dated Apr. 28, 2014 (4 pages).
First Patent Examination Report from the Intellectual Property Office of Australia for Application No. 2012200739 dated Mar. 19, 2014 (4 pages).
Office Action for U.S. Appl. No. 13/369,622 dated Jun. 10, 2014 (7 pages).
Related Publications (1)
Number Date Country
20120224941 A1 Sep 2012 US