The present invention is in the field of seats for infants. The term “infants” herein is intended to refer to babies and small children, for example but not limited to those unable to walk and those for whom a special seat is required to travel in a road vehicle.
Seats for infants are widely used, for example in buggies and push chairs and for transporting infants in vehicles. Some infant seats are designed to be portable by hand whilst accommodating the infant and therefore there is a need for them to be strong and lightweight.
Some embodiments of the invention provide a shell for an infant seat comprising a carbon fiber structure reinforced by one or more reinforcing members of a material other than carbon fiber forming a shell shaped to accommodate an infant. The material other than carbon fiber may be plastic and it may be overmolded onto the carbon fiber structure. Thus according to some embodiments of the invention, a carbon fiber structure may be reinforced by another material such as plastic, rather than, for example, a plastic structure being reinforced by carbon fiber. Carbon fiber is a material with limited flexibility in terms of geometry design. Plastic on the other hand is more flexible and easier to form into a variety of shapes. Therefore according to some embodiments of the invention, carbon fiber may be used as the main structural support and may define the overall seat geometry, and these limitations may be overcome with the use of the material other than carbon. A seat shell according to embodiments of the invention may be designed for use in a vehicle to be either forward facing or rearward facing.
According to some embodiments of the invention, the carbon fiber structure may partially form the shell shaped to accommodate, or cradle, an infant. The remainder of the shell may be formed by the reinforcing members. According to other embodiments of the invention, the carbon fiber shell may be shaped to support the back and legs of an infant in a seated or lying position, in the manner of a plastic infant seat known in the art. The one or more reinforcing members may be located on the inside, e.g. concave side, of the carbon fiber structure. For example the carbon fiber structure may define the shell shape and the reinforcing member(s) may be positioned on the concave shell surface. Thus in use the one or more reinforcing members may be located between the infant and the carbon fiber structure, e.g. carbon fiber shell. The one or more reinforcing members may be shaped so as not to be uncomfortable for the infant, and/or they may be cushioned, for example by a padded insert received in the shell.
The combination of the carbon fiber structure and the one or more reinforcing members may be such that no relative movement between them is possible during use. For example the reinforcing members may be overmolded, injected or glued onto the carbon fiber structure or otherwise mechanically connected to the carbon fiber structure. Thus the shell according to some embodiments of the invention may comprise, from the user's point of view, a one piece structure with no separable parts.
One or more metal inserts may be inserted into the material of the reinforcing member(s) such as a seat belt mount or other attachment device.
The carbon fiber structure or shell may be very thin, for example no more than 2 mm thick and maybe even only 0.6 mm, and may have sharp edges. Thus according to some embodiments of the invention the seat shell may comprise one more edge protection members concealing at least a part of the edge of the carbon fiber structure. The edge protection may also be made of plastic and may also be overmolded onto the carbon fiber structure. For example in the case where the carbon fiber forms a shell the edge protection may be around some or all of the peripheral edge of the shell.
According to some embodiments of the invention, one or more structures of said other material, e.g. plastic, may be provided to receive a carrying handle, for example a guidance channel for a sliding handle or defining an axis for a pivotable handle.
Some embodiments of the invention provide a method of manufacturing a seat shell for a portable infant seat comprising: forming a structure of carbon fiber and reinforcing the structure with one or more reinforcing members of a material other than carbon fiber to form a shell shaped to accommodate an infant, wherein the one or more reinforcing members is located on the concave side of the shell.
Some embodiments of the invention provide a shell for an infant seat comprising a carbon fiber shell portion and one or more shell extension portions of a material other than carbon fiber, wherein the carbon fiber shell portion and the one or more shell extension portions are fixed to each other so as to prevent relative movement between them in use.
The subject matter regarded as the invention is particularly pointed out and distinctly claimed in the concluding portion of the specification. The invention, however, both as to organization and method of operation, together with objects, features and advantages thereof, may best be understood by reference to the following detailed description when read with the accompanied drawings. Embodiments of the invention are illustrated by way of example and not limitation in the figures of the accompanying drawings, in which like reference numerals indicate corresponding, analogous or similar elements, and in which:
It will be appreciated that for simplicity and clarity of illustration, elements shown in the figures have not necessarily been drawn accurately or to scale. For example, the dimensions of some of the elements may be exaggerated relative to other elements for clarity, or several physical components may be included in one functional block or element. Further, where considered appropriate, reference numerals may be repeated among the figures to indicate corresponding or analogous elements.
Although embodiments of the invention are not limited in this regard, the terms “plurality” and “a plurality” as used herein may include, for example, “multiple” or “two or more”. The terms “plurality” or “a plurality” may be used throughout the specification to describe two or more components, devices, elements, units, parameters, or the like. Unless explicitly stated, the method embodiments described herein are not constrained to a particular order or sequence.
Additionally, some of the described method embodiments or elements thereof can occur or be performed simultaneously, at the same point in time, or concurrently.
The reinforcing members 18 and the remainder 14 of shell may be formed by molding, for example injection molding into the carbon fiber structure.
Seat 10 is preferably provided as a one-unit structure, in which the seat shell 11, base 12 and reinforcing members 18 and remainder 14 are not separable. For example, in all embodiments described herein, the non-carbon components of the shell may be glued or over molded onto the carbon fiber structure, in this case the shell portion 13 and the base 12, or otherwise attached such that there is no relative movement between the parts in use.
The use of a carbon fiber structure in the design and manufacture of an infant seat leads to greatly reduced weight as compared for example to a plastic seat shell of equivalent strength.
In all embodiments of the invention described herein, it is possible but not essential for thethe carbon fiber material to be very thin, for example no more than 2 mm in thickness, and even 0.6 mm, and optionally uniform in thickness. Therefore if used alone the carbon fiber may have sharp edges. According to some embodiments of the invention, the edges, for example edges of the shell portion 13 of
One or more metal inserts may be inserted into the material of the shell parts which are not carbon fiber. Such inserts may include but are not limited to buckles, pins 15 and nuts 17. Such inserts may facilitate the mounting of components such as but not limited to a mount for a seat belt or a harness. This is an optional feature for any of the embodiments of the invention described herein.
The seat shell 11 shown in
One or more reinforcing members may be overmolded onto the carbon fiber shell portion in regions corresponding to regions 38 resulting from the analysis. It will be noted that the regions have complex shapes which may not be easily achievable in with carbon fiber. Thus according to some embodiments of the invention, the reinforcement may be provided over a simple carbon fiber structure. For example the carbon fiber structure, such as shell portion 33, may have a uniform thickness. In this embodiment the ergonomic features and comfort of the shell may be provided by the carbon fiber structure and the parts of material other than carbon fiber may serve as reinforcement. This and other embodiments of the invention described herein may achieve a strong structure, optimized to loading from different directions and utilizing advantages of different materials. Features from different illustrated embodiments of the invention may be combined in any manner. Thus for example a seat shell according to the invention may include reinforcing and/or ergonomic features of a material other than carbon fiber in any combination.
In the embodiments of the invention described above, the seat shell may comprise a one piece item in which the carbon fiber structure and the reinforcing member(s) are not designed to be separated in use. Further they may be fixed to each other so as to prevent relative movement between them during use. This may be achieved in several ways including molding and gluing as described above or any other construction technique known to those skilled in the art.
In all embodiments of the invention, the reinforcing members may be located at positions of maximum loading of the carbon fiber structure according to the structure design. The positions of maximum loading may be determined for example by carrying out stress or load tests on the carbon fiber structure without the reinforcing members, for example as illustrated in
It will be appreciated from the foregoing that embodiments of the invention may provide a seat shell with a carbon fiber structure in which material other than carbon fiber may be present and may serve various purposes such as but not limited to:
Consider that stress is defined as follows:
σ=y M/I
It can be seen that the ability of the material to withstand stress is improved with extra height by a factor of three times the added height, multiplied by the power of 3 to the height of the geometry. Therefore the used of plastic to add height to the carbon fiber structure can be a very effective way to improve the strength, for example only in required directions.
Some embodiments of the invention provide a method of manufacturing a seat shell for a portable infant seat. The method may comprise forming a structure of carbon fiber, and reinforcing the carbon fiber structure with one or more reinforcing members of a material other than carbon fiber. These forming and reinforcing steps may be performed separately or as part of the same manufacturing stage, for example over molding, e.g. injection molding. The reinforced structure thus produced may form a shell shaped to accommodate an infant. The reinforcing members may be positioned on the concave surface of the shell.
While certain features of the invention have been illustrated and described herein, many modifications, substitutions, changes, and equivalents may occur to those skilled in the art. It is, therefore, to be understood that the appended claims are intended to cover all such modifications and changes as fall within the true spirit of the invention.
Various embodiments have been presented. Each of these embodiments may of course include features from other embodiments presented, and embodiments not specifically described may include various features described herein.
This application is a National Phase Application of PCT International Application No. PCT/IB2017/052173, International Filing Date Apr. 14, 2017, claiming the benefit of U.S. Provisional Patent Application No. 62/322,251, filed on Apr. 14, 2016, all of which are hereby incorporated by reference.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/IB2017/052173 | 4/14/2017 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2017/216649 | 12/21/2017 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4348049 | Monot | Sep 1982 | A |
4936628 | Delaney | Jun 1990 | A |
5150222 | Nakayama | Sep 1992 | A |
5540365 | LaMair | Jul 1996 | A |
8960794 | St. Pierre | Feb 2015 | B2 |
9505328 | Renault | Nov 2016 | B2 |
20030104883 | Caron | Jun 2003 | A1 |
20060097562 | Hiruta | May 2006 | A1 |
20060181089 | Andre et al. | Aug 2006 | A1 |
20060267386 | Nakhla et al. | Nov 2006 | A1 |
20120169103 | Rennault et al. | Jul 2012 | A1 |
20130099537 | Miyamoto | Apr 2013 | A1 |
20140252814 | Cohen et al. | Sep 2014 | A1 |
Number | Date | Country |
---|---|---|
2285486 | Apr 2001 | CA |
105034871 | Nov 2015 | CN |
105163978 | Dec 2015 | CN |
0197910 | Oct 1986 | EP |
2429401 | Jun 2009 | GB |
Entry |
---|
Search Report dated Aug. 25, 2017 for corresponding PCT Application No. PCT/IB2017/052173. |
Search Report dated Oct. 11, 2019 for corresponding EP Application No. EP17812827.8. |
Notification of Office Action and Search Report dated May 24, 2021 From the State Intellectual Property Office of the People's Republic of China Re. Application No. 201780036090.1 and Its Summary in English. (20 Pages). |
Number | Date | Country | |
---|---|---|---|
20200146462 A1 | May 2020 | US |
Number | Date | Country | |
---|---|---|---|
62322251 | Apr 2016 | US |