The present inventions relates generally to seat systems for passenger vehicles and, more particularly, to a seat system for a passenger aircraft.
Most commercial aircraft passenger seats are designed to recline several inches from the full upright position for passenger comfort. Traditionally, seat back recline is accomplished by a spring-loaded hydraulic device known as a “recline lock”. The recline lock is controlled by a shielded release cable connected to a mechanical push button, which is usually mounted on a seat armrest.
To recline the seat, the passenger presses the button and leans back on the seat. The button pulls the release cable, which actuates a lever at the other end that opens the hydraulic valve in the recline lock, allowing it to compress and thus allow the seat to recline.
If the passenger wants to return the seatback to the upright position, he or she again presses the button and leans forward. The valve on the recline lock will again be opened, allowing the internal spring to expand the recline lock and move the seatback forward.
One example of a seat recline control is shown in U.S. Pat. No. 7,182,402 issued Feb. 27, 2007 to Ahad which is hereby incorporated by reference in its entirety. One example of a seat recline locking assembly is shown in U.S. Pat. No. 6,669,295 issued Dec. 30, 2003 to Williamson which is hereby incorporated by reference in its entirety. Another example of a seat recline locking assembly is shown in U.S. Pat. No. 3,145,052 issued Jan. 24, 1963 to Morgan which also is hereby incorporated by reference in its entirety
The air travel industry is highly price competitive and has generally divided its passengers from First Class and Coach into First Class, Coach and Economy. More recently, as the air travel industry has further expanded its Economy class, it has worked with its manufacturers to reduce passenger seat weight to both increase passenger load and to reduce fuel costs. However, conventional seat recline mechanisms are heavy levered arrangements to accommodate the movement of the arm rests, to provide durability over the projected long life of the interior and to be easily operated by both children and the elderly. Modern Economy seats have very limited structure to house these older mechanisms.
Thus, there remains a need for a seat system having an improved rotary recline lever assembly which is both compact and durable while, at the same times, remains easy for all passengers to operate without excessive force.
The present inventions are directed to a seat system for a passenger aircraft. The seat system includes a passenger seat frame having a backrest support assembly including a backrest and a spreader; and a seat bottom support assembly. The seat system further includes a rotary recline lever assembly including an armrest connected to the spreader; an offset rotary actuator positioned within the armrest; and a release cable attached between the rotary actuator and the backrest support assembly. The seat system may further include a seat back tray table attached to the back of the passenger seat frame.
In one embodiment, the armrest includes a lower body and an arm cap. The lower portion of the arm cap may interlock with the upper portion of the lower body. In addition, the arm cap may be removably attached to the upper portion of the lower body by a fastener for easy access if maintenance was required.
The rotary actuator portion operated by the user may be offset from the center of rotation of the actuator to provide a mechanical advantage to the user. In one embodiment, the mechanical advantage of the offset rotary actuator is between about 1½ and about 3. In another embodiment, the mechanical advantage of the offset rotary actuator is about 2.
Also, the rotary actuator may include a low friction, square wave bushing to provide reduced force requirement to the user. In one embodiment, the low friction, square wave bushing includes a contact surface between about 25% and about 75% with respect to the shaft of its rotation. In another embodiment, the low friction, square wave bushing includes a contact surface of about 50%.
In one embodiment, the rotary actuator further includes a pair of curved tabs to retain the proximate end of the release cable when the rotary actuator is operated by the user. Also, the rotary actuator may further include a grooved slot adjacent to the pair of curved tabs to receive the release cable for crimped end movement to reduce side friction of the cable with its conduit when the rotary actuator is operated by the user.
The rotary actuator may further include at least one mechanical stop to prevent over backwards rotation of the rotary actuator when the actuator is released by the user.
Also, the release cable may further include an outer protective jacket and a crimp on the proximate end of the release cable for engagement with the rotary actuator.
The seat back tray table attached to the back of the passenger seat frame may be movable between a first storage position and a second deployed position. In one embodiment, a lock mechanism is attached to the back of the passenger seat frame for retaining the seat back tray table in a secured position.
In one embodiment, the passenger seat further includes a display attached to the back of the passenger seat. The display may be adjoined by the back of the passenger seat.
A backrest cushion may be attached to the backrest support assembly. The backrest support assembly may further include a headrest. In one embodiment, the headrest is adjustable to accommodate for the height of a passenger.
The passenger seat may further include an upholstered package. In addition, the passenger seat may further include a trim package.
Accordingly, one aspect of the present inventions is to provide a seat system for a passenger aircraft, the seat system including (a) a passenger seat frame having a backrest support assembly including a backrest and a spreader; and a seat bottom support assembly; and (b) a rotary recline lever assembly including an armrest connected to the spreader; a rotary actuator positioned within the armrest; and a release cable attached between the rotary actuator and the backrest support assembly.
Another aspect of the present inventions is to provide in a seat system for a passenger aircraft wherein the seat system includes a passenger seat frame having a backrest support assembly including a backrest and a spreader and a seat bottom support assembly, the improvement comprising a rotary recline lever assembly, the rotary recline lever assembly including an armrest connected to the spreader; an offset rotary actuator positioned within the armrest; and a release cable attached between the rotary actuator and the backrest support assembly.
Still another aspect of the present inventions is to provide a seat system for a passenger aircraft, the seat system including (a) a passenger seat frame having a backrest support assembly including a backrest and a spreader; and a seat bottom support assembly; (b) a rotary recline lever assembly including an armrest connected to the spreader; an offset rotary actuator positioned within the armrest; and a release cable attached between the rotary actuator and the backrest support assembly; and (c) a seat back tray table attached to the back of the passenger seat frame.
These and other aspects of the present inventions will become apparent to those skilled in the art after a reading of the following description of the preferred embodiment when considered with the drawings.
In the following description, like reference characters designate like or corresponding parts throughout the several views. Also in the following description, it is to be understood that such terms as “forward,” “rearward,” “left,” “right,” “upwardly,” “downwardly,” and the like are words of convenience and are not to be construed as limiting terms.
Referring now to the drawings in general and
The seat 12 includes a seat base frame 18, a baggage bar 25 for retaining baggage below the seat base frame 18 and an armrest 22. The seating system 10 may further include a seat back tray table 20 attached to the seat back 28.
Turning to
The backrest support assembly 26 may further include a headrest 30. In one embodiment headrest 30 is adjustable to accommodate the height of a passenger. The backrest support assembly 26 includes a backrest 28 that may tilt with respect to spreader 29 and armrest 22.
A seat back bezel 14 may be attached to the back of the passenger seat 12. The seat back bezel 14 may adjoin a seat back tray table 20 attached to the back of passenger seat 12.
As best seen in
The passenger seat 12 normally has a headrest closeout panel such as shown in
Turning now to
As best seen in
Also, the rotary actuator 46 may include a low friction, square wave bushing 56 to provide reduced force requirement to the user. In one embodiment, the low friction, square wave bushing 56 includes a contact surface between about 25% and about 75% with respect to the shaft of its rotation. In another embodiment, the low friction, square wave bushing includes a contact surface of about 50%.
The rotary actuator 46 may further include a pair of curved tabs 50′, 50″ to retain the proximate end of the release cable 60 when the rotary actuator 46 is operated by the user. Also, the rotary actuator 46 may further include a grooved slot 52 adjacent to the pair of curved tabs 50′, 50″ to receive the release cable 60 for crimped end movement to reduce side friction of the cable with its conduit when the rotary actuator 46 is operated by the user.
The rotary actuator may further include at least one mechanical stop 54 to prevent over backwards rotation of the rotary actuator 46 when the actuator is released by the user.
Also, the release cable 60 may further include an outer protective jacket 64 and a crimp 62 on the proximate end of the release cable 60 for engagement with the rotary actuator 46.
Finally,
Certain modifications and improvements will occur to those skilled in the art upon a reading of the foregoing description. By way of example, the rotary recline lever assembly disclosed herein may be used to release the leg rest as well as the seat back Also, the rotary recline lever assembly may be flipped in order to be in one armrest or the other. It may also be mirrored for applications where “pulling” is more appropriate to the user than “pressing”. It should be understood that all such modifications and improvements have been deleted herein for the sake of conciseness and readability but are properly within the scope of the following claims.
This application claims the benefit of PCT Application No. 20/025640, filed Mar. 30, 2020, which claims be benefit of U.S. Provisional Application No. 62/827,316, filed Apr. 1, 2019, and are hereby incorporated by reference in their entireties.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2020/025640 | 3/30/2020 | WO |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2020/205692 | 10/8/2020 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3145052 | Morgan | Aug 1964 | A |
5102372 | Patterson et al. | Apr 1992 | A |
6481798 | Romca et al. | Nov 2002 | B2 |
6669295 | Williamson | Dec 2003 | B2 |
6749266 | Williamson | Jun 2004 | B2 |
7182402 | Ahad | Feb 2007 | B1 |
8931847 | Cailleteau et al. | Jan 2015 | B2 |
9656583 | Gaither et al. | May 2017 | B2 |
10173778 | Senneff et al. | Jan 2019 | B2 |
10279917 | Wilkey | May 2019 | B1 |
10967773 | Vela | Apr 2021 | B2 |
11040775 | Wong | Jun 2021 | B2 |
20030094840 | Williamson | May 2003 | A1 |
20150274038 | Garing | Oct 2015 | A1 |
20180312084 | Does | Nov 2018 | A1 |
Number | Date | Country |
---|---|---|
WO 2017218240 | Dec 2017 | WO |
Entry |
---|
International Search Report for PCT Application No. PCT/US2020/025640 dated Jun. 29, 2020. |
Written Opinion for PCT Application No. PCT/US2020/025640 dated Jun. 29, 2020. |
Number | Date | Country | |
---|---|---|---|
20220169392 A1 | Jun 2022 | US |
Number | Date | Country | |
---|---|---|---|
62827316 | Apr 2019 | US |