The invention relates to a device for supporting a user in a seated position. More particularly, the invention relates to a seating apparatus providing a reclining movement with a corresponding seat lift movement.
A common goal in the field of seating apparatuses, particularly office chairs, and the like, is to provide an apparatus that provides improved comfort and fit for the user. Achieving these goals generally takes one of two approaches: improving the mechanics of the chair (e.g., the adjustability of the chair, or the individual parts thereof), or improving the comfort of the chair by altering the support provided by the chair (e.g., the seat, the backrest, or the arms).
Multiple various attempts have been made in the past to improve the chair mechanics as a method of improving comfort and usability of the chair. One key aspect of the chair mechanics central to chair comfort is chair reclining movement.
In chairs that provide reclining movement, it is desirable that the recline pivot point be at the center of the body or where the user's back normally pivots (e.g., an axis through the user's hip joints). The pivot point of a reclining chair is normally displaced from the ideal pivot point. It is also desirable to have a chair wherein the angle between the user's upper body and the user's lower body opens up to relieve internal congestive body pressures. It is, of course, also desirable to provide a chair wherein the user's feet remain on the floor and the recline action parallels the natural body action closely enough to avoid the common shirt tail pull problem.
Various approaches to improving comfort of a chair's seat and back rest are also known. For examples, much work has been performed in the field to make the chair seat and back rest form fitting for various users, such as using contouring synthetic foam. Foam, however, is an inherently inadequate support as it is difficult, if not impossible, to make a single piece of foam that provides optimal firmness and softness at desirable points across the foam. Foam can also be problematic due to heat buildup between the foam cushion and the body of the user. Foam cushioning is further undesirable in that it requires upholstering to have a finished look that is appealing to users. Not only does this add cost to the chair, but if the cushion has been specially formed for optimal comfort, the addition of upholstering can alter the shape and firmness (or softness) of the foam.
Previously known chairs have also failed to provide support surfaces that easily and comfortably fit the bodies of a wide range of users. As one method of improving comfort, manufacturers have prepared chairs in a range of sizes (e.g., small, medium, large). This is obviously undesirable, as it requires the preparation of multiple lines of the same product, and accordingly requires sellers of the product to stock multiple lines of the same product. Still further, a user who purchases such a “sized” chair may at some time no longer be sized to the chair. Still further, the sizing of the chair prohibits the comfortable use of the chair by a variety of users.
In light of the shortcoming of previously known seating apparatuses, as described above, it would useful to have a seating apparatus having mechanical advantages, as well as improved seat and back rest support, to provide a user improved comfort. Moreover, it would be useful to provide such a chair in a form that maximizes aesthetics and function, as well as comfort. All of these benefits, as well as others that will become apparent with the description provided herein, are provided by the present invention.
The present invention provides a seating apparatus having a reclining movement with a corresponding seat lift movement. The combination of the movements is particularly beneficial for providing an increased level of user comfort throughout a range of seating positions.
In one embodiment, the invention is directed to a seating apparatus comprising a base, a curved support bar having an upper back rest support portion and a lower seat support portion interconnected by a curved portion, one or more ramps attached to one of the seat support portion and the base, and one or more motion-facilitating components extending from the other of the seat support portion and the base for interacting with the plurality of ramps. Preferentially, the base includes two upwardly curved extensions.
In one particular embodiment, the motion-facilitating components are rollers, and the seat support portion of the chair moves forward and back as the ramps roll across the rollers on the base. Further as seat support moves forward, the movement of the ramps across the rollers causes the seat support portion to move upward. The movement of the ramps across the rollers corresponds to backward leaning movement of the user against the back rest support portion of the curved support bar. Such transference of motion is facilitated by the curved portion of the curved support bar. Preferentially, the curved portion is a spring, and the tensile force imparted to the spring by backward pressure against the back rest support is transferred to the seat support as the curved spring flexes. In one particularly preferred embodiment, the back rest support is pivotally connected to the upwardly curved extensions included on the base. The pivot of the back rest support stabilizes the back rest support and provides additional tension to be transferred through the curved spring.
The seating apparatus of the invention can include further components as commonly found in chairs, such as office chairs. For example, the reclining chair can further include a chair pedestal attached to the base, and the chair pedestal can include casters. In further embodiments, the chair can be a four-legged chair, the base being attached to the leg supports. Further, the chair can optionally include arms, a headrest, or other chair components. Of course, as would be readily recognizable, the chair can further include a back rest attached to the back rest support and a seat attached to the seat support.
In one particular embodiment, the invention provides a seating apparatus comprising the following components: a chair pedestal; a base mounted on the chair pedestal, the base including two upwardly curved extensions; a seat support having a top surface for receiving a seat and a bottom surface; a plurality of rollers attached to one of the base and the bottom surface of the seat support; a plurality of curved ramps for movably interacting with the plurality of rollers, the ramps being attached to the other of the base and the bottom surface of the seat support; a back rest support pivotally attached to the upwardly curved extensions; a spring component positioned between, and rigidly connected to, the seat support and the back rest support; a back rest tiltably attached to the back rest support; and a seat attached to the top surface of the seat support.
The present invention now will be described more fully hereinafter with reference to specific embodiments of the invention and particularly to the various drawing provided herewith. Indeed, the invention may be embodied in many different forms and should not be construed as limited to the embodiments set forth herein; rather, these embodiments are provided so that the disclosure will satisfy applicable legal requirements. As used in the specification, and in the appended claims, the singular forms “a”, “an”, “the”, include plural referents unless the context clearly dictates otherwise.
The invention comprises multiple aspects that can be incorporated singly, or in any combination, into various chair designs. For example, the method and mechanism of the invention for reclining a chair can be used alone, or incorporated into a conventional chair, or it can be used in combination with the shaped diaphragm in a single chair. Similarly, the shaped diaphragm of the invention could be used singly in a conventional chair. While the multiple aspects of the invention may be used together, they are described separately herein. Such description, however, is not intended to limit the scope of the various combinations possible according to the invention.
Reclining type chairs generally allow for the back to recline alone, for the seat and back to recline as a unit, or for the seat back to recline in a coordinated proportion with the seat. If the back alone pivots, it generally creates a problem known as “shirt tail pull.” This problem is particularly acute if the pivot of the chair back is not coordinated with the natural body action. This problem can also be accentuated by the tendency of the hips of the user to slide forward as the back tilts rearwardly.
In chairs where both the seat and back recline as a unit, in the reclined position there is a tendency to lift the legs of the user from the floor creating an undue pressure by the forward edge of the seat against the underside of the legs of the user immediately above the knee. To overcome this problem the pivot point of the reclining action may be moved forward sufficiently to permit the user's feet to stay on the floor. The undesirable effect of this arrangement is that the body angle between the user's torso and legs is unchanged and as a result, the user's eye level drops undesirably when the chair is reclined.
In any reclining chair, it is desirable that the recline pivot point be at the center of the body or where the user's back normally pivots (i.e., an axis through the user's hip joints). The pivot point of a reclining chair is normally displaced from the ideal pivot point. It is also desirable to have a chair wherein the angle between the user's torso and legs opens up to relieve internal congestive body pressures. It is, of course, also desirable to provide a chair wherein the user's feet remain on the floor and the recline action parallels the natural body action closely enough to avoid the common shirt tail pull problem. Moreover, it is desirable to provide a chair which is of simplified construction and yet of clean, pleasing appearance emphasizing the isolated and separate appearance of the seat and back with respect to the supporting frames.
In preferred embodiments, the present invention provides a seating apparatus with a reclining movement that preferentially places the axis of pivot at the user's hip joints and opens up the angle between the user's torso and legs. Further, the seating apparatus of the invention allows for reclining while still avoiding the shirt tail pull problem. In one aspect, the invention provides a seating apparatus that is particularly adapted for increasing the comfort of a user thereof in that the seating apparatus provides a reclining motion and a simultaneous seat lifting motion.
In one particular embodiment, the seating apparatus generally comprises a base, a curved support bar, one or more ramps, and one or more motion-facilitating components for interacting with the ramps. The curved support bar preferably comprises an upper backrest portion and a lower seat support portion interconnected by a curved portion. In particularly beneficial embodiments, the curved portion of the support bar functions as a spring component, thereby transferring force between the upper and lower portions of the support bar. Such transfer of force is useful to increase ease of movement from the upright to the reclined position and back again, as will become evident according to the further description provided herein.
In certain embodiments, the ramps are directly or indirectly attached to the lower seat support portion of the curved support bar, and the motion-facilitating components are attached to the base. However, such arrangement could be reversed or mixed (i.e., ramps and motion facilitating components on both the seat support and the base). In certain preferential embodiments, the motion-facilitating components comprise rollers, such as spherically shaped rollers. For the sake of simplicity, the motion-facilitating components may be referred to herein only in terms of rollers. Likewise, the ramp and roller configuration may be described in terms of the ramps being attached to the seat support and the rollers being attached to the base. Of course, such description is not intended to limit the scope of the invention but is only used for ease of understanding.
The support apparatus of the invention can find use in multiple different seating structures. Typically, the support apparatus is incorporated into an office-type chair comprising a pedestal with a plurality of casters. Such an embodiment is particularly beneficial in that the chair can include a height adjustment mechanism to further increase the comfort of the chair for the user. Other embodiments are envisioned, however, such as a standard four-leg chair, particularly stackable chairs. Preferably, the support apparatus of the invention comprises a base that is adaptable to use with variety of chairs or other supports.
One embodiment of a base for use with a seating apparatus according to the invention is provided in
In certain embodiments, as seen in
As previously noted, the reclining chair of the invention further comprises one or more motion-facilitating components. Such components can include any material or mechanism useful for facilitating a sliding motion to a corresponding ramp. As more fully described below, the ramps and the motion-facilitating components are discrete components that interact in a sliding fashion, the ramps moving across the motion-facilitating components or the motion-facilitating components sliding or rolling across the ramps. Given this interaction, it is beneficial for the ramps and the motion-facilitating components to be formed of materials that can withstand vigorous use and will not wear excessively over time so as to reduce the function of the apparatus. Moreover, as the weight of a user is supported on the ramps and the motion-facilitating components, it is beneficial for both to be formed of a high strength material capable of supporting at least the weight of the chair components and the weight of an average adult, preferably well in excess of such a weight, and still perform the functional movements provided by the apparatus.
The motion-facilitating component may take on a variety of conformations. For example, the component could be in the form of a roller. Such a roller could be substantially shaped like a wheel (e.g., a wheel for a roller skate or in-line skate). In one preferred embodiment, the rollers are spherical in nature. Such an embodiment is particularly beneficial for providing stability to the apparatus. The spherical shape increases the surface area of the roller in contact with the ramp, particularly when the ramp comprises a track having a semi-circular shape corresponding to the spherical rollers, thereby being particularly adapted for receiving the rollers. Accordingly, the roller becomes self-centering in the track and avoids drifts. Of course, other embodiments of the motion-facilitating components are also encompassed by the invention. For example, the motion-facilitating components could include stationary low-friction pieces or ball bearings.
The rollers can comprise any material providing strength, durability, and preferentially, reduced friction during interaction with the ramps. For example, the rollers can be formed from metal or polymeric materials. In certain embodiments, the rollers are formed of low friction, high strength polymeric material, such as polytetrafluoroethylene (PTFE). In further embodiments, the rollers comprise elastomeric materials, such as urethanes, which soften the action of the rolling movement across the ramps, thereby providing a smooth action.
The ramps are similarly preferably formed of a material providing strength, durability, and, preferentially, reduced friction during interaction with the rollers. Exemplary materials for use in the ramps include, but are not limited to, high density polyethylene, high density polypropylene, PTFE, and the like.
As seen in
Returning to
Further components of the seating apparatus of the invention are illustrated in
The use of the term “bar” in relation to the curbed support bar is not intended to limit the scope of the component but is used merely for descriptive purposes. The curved support bar can include, but is not limited to, a conventional bar structure (e.g., a long piece of material that is solid, cylindrical, or tubular in nature) but can rather include other shapes and conformations. For example, as seen in
The curved portion 65 of the curved support bar 60 beneficially functions as a spring component allowing a certain degree of flexure to the curbed support bar 60. The presence of the spring component provides multiple benefits and is particularly advantageous in comparison to a mere pivotal connection between a back rest component and a seat component. For example, flexure of the curved portion (i.e., the spring action) is useful for facilitation the reclining motion of the seating apparatus, as well as providing for ease of return of the chair to the upright position. Accordingly, as used herein, the curbed portion of the curbed support bar may be referred to as the support spring.
Returning to
As previously noted, the ramps 80 interact with the rollers 40 to allow for backward and forward motion, as well as a lifting motion, for the seat portion 100 of the seating apparatus. Of course, as previously noted, the ramps 80 and the rollers 40 could be interchanged such that the ramps 80 were attached to the base 10 and the rollers were attached to the seat support portion 68 of the curved support bar 60.
With the specific components of the seating apparatus generally described above, the practical function of the seating apparatus, and the particular benefits arising therefrom, are more fully described below with reference to
Schematic illustrations of the support apparatus are provided in
As illustrated in
The curved support bar 60 is shown with the ramps 80 formed in the bottom surface of the seat support portion 68. As seen in
Further interactive with the roller are one or more spring friction cups 45. As seen with the embodiment of
As seen further illustrated in
The curved support bar 60 interacts with the base 10 in that the ramps 80 rest directly upon the rollers 40. The certain embodiments, the curbed support bar 60 is secured to the base by a pivotal attachment to the curbed extensions 25, preferentially near the upper end of the curved extension 25. This pivotal attachment acts as the back rest recline pivot point 150 for the reclining motion described below.
The reclining chair of the invention beneficially takes advantage of the weight of the user to facilitate both a reclining motion an seat lifting motion, as well as to provide for ease of return to the upright, seat lowered position. When the chair occupant exerts force against the back rest, the force is transferred to the back rest support, which leads to the reclining motion. Under this motion, the backrest support is tilted to the rear above the back rest recline pivot point, and the back rest support is pushed forward below the back rest recline pivot point. Accordingly, the portion of the back rest support below the back rest recline pivot point may be referred to as a pusher arm. The pusher arm portion of the back rest support is rigidly connected to the curved portion (the support spring component) of the curved support bar. As the pusher arm moves forward, the force exerted thereby flexes the support spring changing its curved shape into a more open conformation, thereby adding resistance to the tilt and the recline. The support spring is preferentially shaped to encourage the chair into the upright position. The support spring, arising from is shape and relationship to the back rest support and the seat support, functions as a thrusting link between the back rest support and the seat support so that a reclining force applied to the back rest support is transferred to the seat support as a forward moving force. As the seat support moves forward, the attached ramps move across the rollers carrying the seat support, the attached seat, and the seat occupant to a lifted position.
The combination of the recline geometry with the shape and angle of the ramp is preferably calculated to cause the seated weight of the occupant to be transferred proportionally as a counter-balance to the recline force. The support spring also preferably contributes to the resistance. The reclining motion of the apparatus is generally coordinated by three combined motions: the tilt of the back rest support at the back rest recline pivot point; the tilt of the back rest at its tiltable attachment to the back rest support; and the raising and forward shifting motion of the seat. The combination of these three movements proves for a reclining movement that most closely simulates the natural, and most comfortable, reclining motion of the body.
In addition to comfort, the recline is also particularly useful in that the ability to perform tasks, such as office work are not hindered. For example, in the combined recline movement, the seat simultaneously raises, but only a distance useful to accomplish the goals described herein. Specifically, the upward movement of the seat is not significant enough to lift the feet of the user from the floor. Preferentially, the distance the seat raises is small enough so as not to be noticed by the user. In certain embodiments, the distance the seat raises is about 0.25 inches to about 1.5 inches, preferably about 0.5 inches to about 1 inch.
As a seated user leans backward in the chair to recline, the load from the user's body weight is transferred from being support predominantly by the seat to being partially supported by the back rest, this load transfer being in a logarithmic relationship. Accordingly, as the angle of the recline increases, the downward force against back rest support increases, the increase becoming greater with the angle of the recline. Mover, as the occupant reclines, the back rest tilts causing additional load from the weight of the user's upper body against the back rest to be transferred to the reclining motion, further easing the reclining movement for the use.
As previously noted, the support apparatus of the invention is particular designed to optimize user comfort. While comfort is a concept that would seem intuitive, achieving the end result is a difficult endeavor. The present invention embodies the realization that integrating a spring component into the overall support for the apparatus can make the reclining motion feel more natural and comfortable, particularly when the back rest support is designed to provide a specific degree of tilt.
According to certain embodiments, the degree of tilt provided by the apparatus is at least partially controlled by the point of attachment of the back rest support portion of the curved support bar to the upwardly curved extension of the base. In particular, by making the point of attachment higher or lower on the back rest support portion, the degree of tilt can be increased or decreased. Moreover, such placement also increases or decreases the force exerted by the pusher arm during reclining. The degree of tilt will be naturally limited by the force constant of the spring component. Further, the degree of tilt can be limited through inclusion of a stop mechanism. For example, a pin may be positioned extending through or from the back rest support and further extending through the upwardly curved extensions at a point below the back rest recline pivot point. The extension through the upwardly curbed extensions is preferably a sliding junction, and the length of the sliding junction can limit the tilt of the back rest support.
In one embodiment, the apparatus is designed, according to the above methods, such that the backrest support has a maximum recline of about 25° from the resting position. In further embodiments, the backrest support has a maximum recline in the range of about 14° to about 22° or about 16° to about 20°. In one particular embodiment, the backrest support has a maximum recline in the range of about 18°.
The shape of the ramps, which provide the lifting motion to the seat, thereby lifting the occupant, is determined by the diminishing load exerted by the occupant's lower body rather than the increasing load exerted by the occupant's reclined upper body. Accordingly, in preferred embodiments of the invention, the ramps are beneficially designed such that the angle of the ramps changes as the reclining action of the chair increases. This changing angle defines a curve against the rollers that provides an increasing lifting force as the ramps move forward across the rollers.
The reclining chair of the invention is uniquely characterized by the variable angle provided by the ramps. The ramp angle is variable so as to apportion the resistance to the reclining motion against the force necessary to lift the occupant in the seat. This relationship is most specifically determined by the geometry of the motion of the chair, most particularly the location of the recline pivot to the occupant's body. The geometry is particularly maximized in reference to the ramp angle.
The ramp angles according to the invention can vary according to various factors, including the recline geometry, the force of the support spring component, the resistance of the motion-inducing component, and the like. In one particular embodiment, the angle of the ramp curve varies across a range such that the ramp angle is minimized at the portion of the ramp corresponding to a lowered seat position and the ramp is maximized at the portion of the ramp corresponding to lifted seat position. In certain embodiments, the minimum ramp angle is about 5° to about 20° or about 6° to about 15°. In one specific embodiment, the minimum ramp angle is about 8°. Further, according to certain embodiments, the maximum (or ultimate) ramp angle is about 25° to about 35° or about 27° to about 33°. In one preferred embodiment, the maximum ramp angle is about 30°.
As described above, the variable ramp angles correspond to a ramp formed of a curved geometry. Accordingly, the initial ramp angle and the ultimate ramp angle, as well as the curve in between, can be defined in terms of the curve radius of the ramp. In one preferred embodiment, the ramp angles and the curve thereof is formed by a radius of about 7 inches to about 9 inches, more preferably about 7.5 inches to about 8.5 inches, most preferably about 7.75 inches to about 8.25 inches.
The shape of the ramps and the rollers can vary. In certain embodiments, the ramps may be substantially linear in shape and the rollers be non-uniform in shape (e.g. elongated). For example, the rollers could be substantially oval-shaped. In further embodiment, the rollers may be spherical, but the ramps may have varying shapes (e.g. partially linear and partial curved), thereby allowing varying lift motions.
In light of the above description, the reclining motion of the apparatus can be readily envisioned. In
The action of the support apparatus allowing for reclining of the back rest with a simultaneous lifting and forward motion of the seat is further illustrated in
A seating apparatus according to one embodiment of the invention is illustrated in
In one embodiment, the armrests 300 are attached to the curved extension 25 via the same means used to attach the back rest support 62 to the curved extension 25 (i.e., the back rest recline pivot point 150). The armrests 300 may be further secured with a second attachment to add stability.
The embodiment illustrated in
In another aspect, the invention is particularly directed to a chair seat. The seat is particularly useful in a seating apparatus as otherwise described herein but may be used in various other seating apparatuses. The chair seat is particularly useful in that it provides a shaped diaphragm support surface that has varying levels of support provided across the support surface.
In one embodiment, the chair seat comprises a U-shaped seat frame. Referring the
In addition to the frame, the chair seat further comprises a shaped diaphragm support surface stretched across the central opening of the set frame. Accordingly, the front edge of the shaped diaphragm defines the front edge of the seat, the U-shaped seat frame specifically not including a front frame piece. In certain embodiments, the shaped diaphragm may wrap around to form the front edge, the diaphragm extending over the top of the seat frame, wrapping over the front, and attached at some position on the bottom of the seat frame. The absence of front frame piece is particularly beneficial for providing comfort to a user in the area of the back side of the legs behind the knees (when seated).
In known chairs that have a complete frame, including a front frame piece, the back of the user's legs rest against the hard surface of the seat frame, thereby causing a pressure buildup in this area, which is obviously undesirable. Past efforts to remedy this problem have included providing padding (or extra padding) in this area above the front frame piece. This only compounds the problem, however, by generally increasing the thickness of the seat in this area and actually causing greater pressure (although spread over a slightly greater area). The present invention, however, solves this problem by removing the front frame piece. Accordingly, when seated, the user's legs are fully supported by the shaped diaphragm and the pressure exerted by the user's body weight is more evenly spread across the entire surface of the support, rather than being concentrated over a front frame piece.
While the present invention reduces pressure buildup by removing the front frame piece, such removal is not at the expense of structural support. Rather, in specific embodiments of the invention, the chair seat also compromises a downwardly curved separator bar positioned between the two substantially straight side portions of the frame. Preferably, the separator bar is positioned near the front of the seat frame. Returning to
The separator bar is particularly useful in that it pushes apart the free ends of the two substantially straight portions of the seat frame. In certain embodiments, the U-shaped seat frame is formed such that the straight portions of the frame are substantially parallel or actually tend to angle inward toward the front portion of the frame (i.e. at the free ends of the straight portions). The separator bar is formed such that the overall length of the separator bar is greater than the distance between the straight portions of the seat frame in the position wherein the separator bar is to be attached. Accordingly, when attached the separator bar, the free ends of the two straight portions are pushed apart, thus further stretching the shaped diaphragm previously attached to the seat frame such that the diaphragm is stretched tighter near the front of the seat frame than near the rear of the seat frame.
This is particularly beneficial for increasing the comfort of the user. The rear portion of the shaped diaphragm, having a lesser degree of stretch, provides more flexibility, thus adding comfort to the tailbone region of the seated user. Moreover, the front portion of the diaphragm, having a greater degree of stretch, provides increased support in the area corresponding to the legs of the seated user, which has the benefit of spreading force more evenly across the surface of the diaphragm, thus increasing the overall comfort of the user. Such comfort is even further increased by shaping the front portion of the seat to provide a waterfall effect.
In light of the above, the invention also provides a method of making a chair seat. In one embodiment, the method comprises providing a U-shaped seat frame as described herein, providing a shaped diaphragm, attached the diaphragm to the seat frame, providing a curved separator bar as described herein, and attached the separator bar to the seat frame, preferably near the front of the seat frame. The separator bar should have an overall length that is greater than the distance between the straight portions of the seat frame in the position wherein the separator bar is to be attached. Thereby, upon attached the separator bar, the diaphragm is stretched at the front portion of the seat. The diaphragm is attached to the seat frame prior to attaching the separator bar. When initially attached the diaphragm, it may be stretched or unstretched. Moreover, the degree of stretching during the initial attachment may be varied.
According to still another aspect of the invention, there is provided a seating apparatus wherein at least on the seat and back support is formed of a shaped diaphragm wherein the diaphragm itself provides varying levels of support across the surface of the diaphragm. Preferably, the diaphragm is formed of a elastomeric material, such as injection molded polyurethane. Alternatively, the shaped diaphragm is formed a mesh fabric. Moreover, the shaped diaphragm may be formed of other mesh-type materials, as described herein. Generally, the diaphragm may be formed of any flexible medium. It is understood, however, that any material capable of providing cushioning and support and sustaining strength and durability with a series of openings formed therein could be used according to the invention. In certain embodiments, the thin foam or textile layer functions only to provide aesthetic, decorative, or minor cushioning functions, and should not affect ability of the diaphragm to deflect to receive the weight of a user. Further, a diaphragm can be attached to the seat support by any method useful in the art. For example, the diaphragm could be placed across a seat frame of back rest frame and secured in the frame by the edges of the shaped diaphragm being forced into a groove extending around the frame, with or without the additional use of a spline.
The shaped diaphragm of the invention is particularly characterized in that its general shape, surface detail, and openings are calculated to provide body support to a user in discrete areas as beneficial to accommodate local body needs. The shaped diaphragm is generally formed to have a series of openings formed therein. The openings can be formed according to the various methods, as described herein, which are particularly useful in allowing formation of the opening in particular patterns, sizes, and concentrations beneficial for providing varying levels of support and cushioning.
The openings can be generally formed in a pattern across the shaped diaphragm, such as in a series of rows and columns, although any regular pattern can be used for the basic layout of the openings. According to the present invention, however, it has been discovered that in addition to the regular pattern of openings formed in the diaphragm, it is beneficial to alter the pattern by changing the size and concentration of the openings at various locations across the diaphragm. As would be recognizable to one of skill in the art, increasing the size of the openings in the diaphragm decreases the overall resistance of the diaphragm of the weight of the user. Similarly, increasing the number of openings in a given area of the diaphragm (i.e. the concentration of the openings) also reduces the resistance of the diaphragm. Making such changes locally, or in discrete areas of the diaphragm, allows the diaphragm to be specially designed to have varying levels of support and cushioning across the diaphragm.
In one particular embodiment, the diaphragm may have a series of openings formed therein, the series being interrupted in the rear, central portion of the diaphragm to have a different pattern of openings. In this area, the concentration of the openings may be altered to provide a greater concentration of openings in this area, which generally corresponds to the tailbone area of a seated user. The increased concentration of openings in this area reduces the amount of support material present so the user's tailbone region meets less resistance in this area of the diaphragm, effectively providing more cushioning in this area of the diaphragm.
In another embodiment of the invention, the increased cushioning effect, as described above, may be provided by formed the diaphragm to have larger openings in the specific areas of the diaphragm requiring greater cushioning, in relation to the size of the openings in the remaining portions of the diaphragm. Such cushioning effects are preferentially enhanced by forming the remaining portions of the diaphragm to provide extra support. For example, in certain embodiments wherein the size of concentration of the openings is increased to provide extra cushioning in specific areas of the diaphragm, it is expected that the resistance normally met in such areas of the diaphragm would be transferred to other areas of the diaphragm. In the embodiment described above, it would be expected that more resistance would be transferred to the thigh areas adjacent the tailbone area and forward. Thus, sitting pressure is more evenly distributed across the body of the user, reducing localized high pressure areas, such as the tailbone region. Accordingly, the diaphragm can be further formed to provide greater support in the forward areas of the diaphragm for receiving greater pressure. In one embodiment, the areas of the diaphragm formed for receiving greater pressure could be formed to have a lower concentration of openings or to have openings of smaller dimensions. Alternatively, such areas could be formed to have an increased diaphragm thickness, the thickness beneficially varying across the diaphragm as necessary. For example, the thickness of the diaphragm could be greater near the front portion of the seat and thinner in the area corresponding to the tailbone of the user.
In certain embodiment, increased support in the front, or thigh area, of the seat can be provided for maintaining the user's leg in a position spaced away from any solid support pieces, such as a front cross support of the seat frame. Providing adequate support in this area prevents the diaphragm from lowering, in response to the weight of the user, to make contact with the cross support. Accordingly, a greater level of comfort is afforded to the user, and localized pressure from the cross support is avoided.
In further embodiments of the invention, the shaped diaphragm can include particular surface detail to provide additional comfort and support to the user. The surface detail can encompass raised areas, as well as indentation in the diaphragm. The raised areas or the indentation can be calculated an positioned to provide therapeutic relief to certain pressure points or to increase pressure, as beneficial, to further distribute pressure across the user's body or to actually provide therapeutic affects (i.e. acupressure).
In one embodiment, the shaped diaphragm of a plurality of boss structures interconnected by a plurality of web structures. The boss structures and web structures are spaced apart to form a series of openings between the structures. Beneficially, the dimensions of the boss structures, the web structures, and the openings are varied across the diaphragm to provide varying levels of body support in discrete areas of the diaphragm. In such embodiments, the boss structures can themselves form the raised portions of the diaphragm. Similarly, the web structures could form the indentations of the diaphragm.
In further embodiments, the shaped diaphragm can be used in the back rest of a seating apparatus. Preferably, the back seat diaphragm has a calculated compound curvature to coordinate with ideal back support. Because the load on the back rest is much less than on the seat, the overall thickness of the diaphragm in the back rest is generally less than the diaphragm thickness used in the seat.
In one specific embodiment, the shaped diaphragm is used in a back rest, and the openings in the diaphragm are specifically calculated to provide optimal support and comfort to the lumbar area of the back. For example, the openings in the area of the diaphragm corresponding to the lumbar area of a user are preferentially larger than in the other areas of the diaphragm the larger openings allowing for greater flexibility in the lumbar area. This greater flexibility is particularly beneficial to accommodate the varying body of a large number of possible users of the chair. The shaped diaphragm is particularly useful in this embodiment of the invention in that the contour of the natural contour of the back will limit the amount of displacement so there is never excessive loss of support of the user's back.
In further embodiments of the invention, the back rest can be formed of a plurality of pieces that are combined, and specifically contoured, to provide beneficial support. For example, the back rest can be formed of a plurality of shaped diaphragm, wherein each diaphragm is cut, or otherwise formed, in a shape so that when the several diaphragms are combined, together they form a chair back rest that is capable of beneficially adapting to the user's shape. For instance, a back rest made according to the present invention provides a mesh back rest having lumbar support without the necessity of any additional solid structure. Thus, a mesh back rest according to the present invention can have contours without a pad applying pressure to the mesh to achieve beneficial contours.
The several diaphragms are capable of being combined in a conventional fashion. For example, the diaphragms can be combined by sewing the diaphragms together, by welding them together (such as by sonic welding), or by using an adhesive to bind the diaphragms together. Typically, the back rest surface, when formed of a plurality of contoured diaphragms, has at least two straight or curvilinear seams. In a preferred embodiment, the seams are curvilinear. In further embodiments, the contour provided to the back rest formed of the shaped diaphragm is provided by the back rest frame.
Many modifications and other embodiments of the inventions set forth herein will come in mind to one skilled in the art to which these inventions pertain having the benefit of the teachings presented in the foregoing descriptions. Therefore, it is to be understood that the inventions are not to be limited to the specific embodiments disclosed and that modifications and other embodiments are intended to be included within the scope of the appended claims. Although specific terms are employed herein, they are used in a generic and descriptive sense only and not for purposes of limitation.
This application is a continuation of U.S. application Ser. No. 12/390,620 filed on Feb. 23, 2009, which in turn is a divisional of U.S. application Ser. No. 11/425,298 filed on Jun. 20, 2006, now U.S. Pat. No. 8,061,775 issued on Nov. 22, 2011, which in turn claims the benefit of U.S. Provisional Application Ser. No. 60/692,323 filed on Jun. 20, 2005, each incorporated herein in its entirety.
Number | Date | Country | |
---|---|---|---|
60692323 | Jun 2005 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11425298 | Jun 2006 | US |
Child | 12390620 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12390620 | Feb 2009 | US |
Child | 13403808 | US |