SEATING STRUCTURE HAVING A KNITTED SUSPENSION MATERIAL

Information

  • Patent Application
  • 20240081537
  • Publication Number
    20240081537
  • Date Filed
    September 07, 2023
    a year ago
  • Date Published
    March 14, 2024
    9 months ago
  • Inventors
  • Original Assignees
    • MILLERKNOLL, INC. (ZEELAND, MI, US)
Abstract
An article of furniture includes a frame defining an opening, and a suspension material spanning over the opening and having a weft knit construction. The suspension material is configured to support a user, and the suspension material includes at least one multifilament forming a jersey knit structure which has a plurality of courses extending in a course direction and a plurality of wales extending in a wale direction, and at least one monofilament corresponding to and being inlaid in a respective one of the courses. The suspension material has, in the course direction, a ratio of machine gauge, in needles per mm, to course stiffness, in N per mm, between 0.02 and 0.2 and has, in the wale direction, a ratio of machine gauge, in needles per mm, to wale stiffness, in N per mm, between 0.07 and 1.4.
Description
BACKGROUND

The present invention relates to furniture items having knitted suspension materials, and more specifically, seating structures having knitted suspension materials.


SUMMARY

In one embodiment, an article of furniture includes a frame defining an opening, and a suspension material spanning over the opening and having a weft knit construction. The suspension material is configured to support a user, and the suspension material includes at least one multifilament forming a jersey knit structure which has a plurality of courses extending in a course direction and a plurality of wales extending in a wale direction, and at least one monofilament corresponding to and being inlaid in a respective one of the courses. The suspension material has, in the course direction, a ratio of machine gauge, in needles per mm, to course stiffness, in N per mm, between 0.02 and 0.2 and has, in the wale direction, a ratio of machine gauge, in needles per mm, to wale stiffness, in N per mm, between 0.07 and 1.4.


In another embodiment, the disclosure provides an article of furniture includes a frame defining an opening, and a suspension material spanning over the opening and having a weft knit construction. The suspension material is configured to support a user and includes at least one multifilament forming a jersey knit structure which has a plurality of courses extending in a course direction and a plurality of wales extending in a wale direction, and at least one monofilament corresponding to and being inlaid in a respective one of the courses. The at least one monofilament has a ratio of machine gauge, in needles per mm, to stiffness, in N per mm, between 0.5 and 2.6, and has a ratio of machine gauge, in needles per inch, to linear density, in denier, between 0.005 and 0.02.


In another embodiment, the disclosure provides a suspension material for use with an article of furniture. The suspension material includes at least one multifilament and at least one monofilament. The at least one multifilament forms a jersey knit structure which has a plurality of courses extending in a course direction and a plurality of wales extending in a wale direction. The at least one monofilament corresponds to and is inlaid in a respective one of the courses. The at least one monofilament has a ratio of machine gauge, in needles per mm, to stiffness, in N per mm, between 0.5 and 2.6, and has a ratio of machine gauge, in needles per inch, to linear density, in denier, between 0.005 and 0.02. The suspension material has, in the course direction, a ratio of machine gauge, in needles per mm, to course stiffness, in N per mm, between 0.02 and 0.2 and has, in the wale direction, a ratio of machine gauge, in needles per mm, to wale stiffness, in N per mm, between 0.07 and 1.4.


Other aspects of the invention will become apparent by consideration of the detailed description and accompanying drawings.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a perspective view of a seating structure according to some embodiments.



FIG. 2 is a plan view of a suspension material of a seat of the seating structure shown in FIG. 1.



FIG. 3 is a plan view of a suspension material of a backrest of the seating structure shown in FIG. 1.



FIG. 4 is an enlarged view of a single jersey with tunnel inlay suspension material for use with the seating structure shown in FIG. 1.



FIG. 5 is a dot diagram of the suspension materials of the seating structure shown in FIG. 1.



FIG. 6 is an enlarged view of a double jersey interlock with tunnel inlay suspension material for use with the seating structure shown in FIG. 1.



FIG. 7 is a dot diagram of the suspension material shown in FIG. 6.



FIG. 8 is a plan view of a first suspension material for use with a backrest of a seating structure.



FIG. 9 is a plan view a second suspension material for use with a backrest of a seating structure.





DETAILED DESCRIPTION

Before any embodiments of the invention are explained in detail, it is to be understood that the invention is not limited in its application to the details of construction and the arrangement of components set forth in the following description or illustrated in the following drawings. The invention is capable of other embodiments and of being practiced or of being carried out in various ways.


Various exemplary embodiments are related to seating structures and methods of manufacturing seating structures. Seating structures may include any structure used to support a body of a user, for example, without limitation, task chairs, side chairs, sofas, airplane seats, vehicle seats, bicycle seats, boat seats, beds, dental and medical seats and beds, auditorium and educational seats, etc. It should be understood that the various methods and devices disclosed herein may be applied to seating structures other than a seat and/or backrest, including for example and without limitation armrests, headrests and other ergonomic positioning features. Although the illustrated embodiments are shown in connection with an office chair, other embodiments can include different configurations.



FIG. 1 shows an exemplary embodiment of a seating structure 10, such as a chair. The illustrated embodiment is only one example of a configuration of a chair. The chair may have other shapes and/or configurations. The seating structure 10 may also be a different type of furniture item, such as a bench, sofa, settee, chaise, ottoman, bed, cot, and the like. In the illustrated embodiment, the seating structure 10 is an office chair.


The seating structure 10 includes a seat 14, a backrest 18, and a base 22. In the illustrated embodiment, the seating structure 10 includes armrests 20. In other embodiments, the seating structure 10 may not include armrests. The base 22 includes a tilt mechanism 26, a support column 30 coupled to and supporting the tilt mechanism 26, and a base structure 34 coupled to and supporting the support column 30. In other embodiments, the seating 14 and/or backrest 18 may be rigidly coupled to the support column 30 or base 22. In the illustrated embodiment, the base 22 includes five feet 23 surrounding a central hub. Each of the feet 23 is coupled to a castor wheel 24. In some embodiments, the base 22 may include glides instead of castor wheels. In other embodiments, the base 22 may include a plurality of legs. In such embodiments, the support column 30 and/or the tilt mechanism 26 may be omitted.


The seat 14 includes a frame 38a, a suspension member 42a, and a carrier 46a. The carrier 46a retains the suspension member 42a and connects to the frame 38a. In other embodiments, the suspension member 42a may be directly coupled to the frame 38a. The frame 38a defines an opening, and the suspension member 42a spans over the opening. The suspension member 42a is configured to support a weight of a user.


Likewise, the backrest 18 includes a frame 38b, a suspension member 42b, and a carrier 46b. In some embodiments, only one suspension member and one frame may be used to form a continuous seat and backrest. In the illustrated embodiment, the carrier 46b retains the suspension member 42b and connects to the frame 38b. The suspension member 42b extends across the frame 38b to support a user on the seating structure 10. In other embodiments, the suspension member 42b may be directly coupled to the frame 38b. The frame 38b defines an opening, and the suspension member 42b spans over the opening. The suspension member 42b is configured to support a back of a user.


Fabric Construction and Composition

As illustrated in FIGS. 2 and 3, the suspension members 42a, 42b are panels or sheets and are formed from a suspension material. The suspension members 42a, 42b have a weft knit construction. For example, the suspension members 42a, 42b may have a single jersey knit construction or a double jersey knit construction. The double jersey knit construction may be a double jersey interlock, a double jersey non-interlock, or a double jersey mis-stitched. In some embodiments, the suspension members 42a, 42b may have a combination of single jersey knit sections and double jersey knit sections. The suspension members 42a, 42b may be formed from a weft knitting machine, such as a V-bed machine or a flat-bed machine. As a result, the suspension members 42a, 42b may be formed without excess fabric. That is, the suspension members 42a, 42b can be produced to finished application shape and size with no cutting or sewing required. In other embodiments, the suspension members 42a, 42b may have a warp knit structure, a circular knit structure, and/or a flat knit structure.



FIGS. 4 and 5 illustrate a single jersey knit and tunnel inlay structures 50a, 50b of the suspension members 42a, 42b. Each single jersey knit structure 50a, 50b has a multifilament 54a, 54b and a plurality of monofilaments 58a, 58b. In some embodiments, the single jersey knit structure may include a plurality of multifilaments. Each of the multifilaments 54a, 54b forms a respective one of the jersey knit structures and has a plurality of courses extending in a course direction C and a plurality of wales extending in a wale direction W. The plurality of monofilaments 58a, 58b each correspond to and are inlaid in a respective one of the courses. Each of the plurality of monofilaments 58a, 58b extends in the course direction C. In the illustrated embodiment, every course includes an inlaid one of the monofilaments 58a, 58b. In some embodiments, only some of the courses may include an inlaid one of the monofilaments 58a, 58b. In some embodiments, the monofilaments 58a, 58b may be inlaid in the wales and may extend in the wale direction W.


Fabric Specification

Referring back to FIGS. 2 and 3, the suspension members 42a, 42b have a heat finish such as a steam finish. The suspension members 42a, 42b may have a machine gauge between 5 and 20 ga, specifically between 10 and 18 ga, and more specifically between 12 and 16 ga. In the illustrated embodiment, the suspension members 42a, 42b have a machine gauge of 14 ga. Machine gauge should be understood to mean a number of needles per inch. The monofilaments 58a, 58b define end counts of the suspension members 42a, 42b. End count should be understood to mean the number of monofilaments in the course direction. The end counts may be between 5 and 30 ends per inch, specifically between 11 and 25 ends per inch, and more specifically between 16 and 20 ends per inch. In the illustrated embodiment, the end counts are 18 ends per inch or 7 ends per centimeter. In some embodiments, the end counts may be between 5 and 9 ends per centimeter. The end counts may vary based on the gauge (e.g., needles per inch, or needles per mm, etc.) of the knitting machine used to create the suspension member 42a, 42b. As such, the suspension members 42a, 42b may have a ratio of machine gauge (in needles per mm) to inlaid monofilament count (in ends per mm) between 0.6 and 1.4. The suspension members 42a, 42b may have a fabric weight between 315 g/m2 and 945 g/m2, specifically between 475 g/m2 and 790 g/m2, and more specifically between 550 g/m2 and 700 g/m2. In the illustrated embodiment, the suspension members 42a, 42b have a weight of 630 g/m2.


In the course direction C, the suspension members 42a, 42b may have a tensile force between 65 N and 200 N at 10% strain, specifically between 100 N and 160 N at 10% strain, and more specifically between 117 N and 141 N at 10% strain. In the illustrated embodiment, the suspension members 42a, 42b have a tensile force in the course direction C of 129 N at 10% strain. The suspension members 42a, 42b may have a tensile force in the course direction C between 115 N and 345 N at 20% strain, specifically between 175 N and 290 N at 20% strain, and more specifically between 207 N and 253 N at 20% strain. In the illustrated embodiment, the suspension members 42a, 42b have a tensile force in the course direction C of 230 N at 20% strain. The suspension members 42a, 42b may have an ultimate tensile strength in the course direction C of at least 300 N, specifically at least 450 N, and more specifically at least 500 N. In the illustrated embodiment, the suspension members 42a, 42b each have an ultimate tensile strength in the course direction C of at least 598 N. The ultimate tensile strength in the course direction C should be understood to mean the maximum force that the suspension member can withstand while being stretched in the course direction C before breaking.


Additionally, in the course direction C, the suspension members 42a, 42b may have a stiffness between 8 N/mm and 25 N/mm, specifically between 12 N/mm and 20 N/mm, and more specifically 13.5 N/mm and 17.5 N/mm. In the illustrated embodiment, the suspension members 42a, 42b have a stiffness of 15 N/mm in the course direction C. The stiffness may vary based on the gauge (e.g., needles per inch, or needles per mm, etc.) of the knitting machine used to create the suspension member 42a, 42b. As such, the suspension members 42a, 42b may have a ratio of machine gauge (in needles per mm) to course stiffness (in N per mm) between 0.02 and 0.2. In the course direction C, the suspension members 42a, 42b have at least 80% strain at break, specifically at least 90% strain at break, and more specifically at least 100% strain at break.


In the wale direction W, the suspension members 42a, 42b may have a tensile force between 15 N and 35 N at 10% strain, specifically between 20 N and 30 N at 10% strain, and more specifically between 22 N and 26 N at 10% strain. In the illustrated embodiment, the suspension members 42a, 42b have a tensile force in the wale direction W of 24 N at 10% strain. The suspension members 42a, 42b may have a tensile force in the wale direction W between 25 N and 70 N at 20% strain, specifically between 35 N and 60 N at 20% strain, and more specifically between 42 N and 52 N at 20% strain. In the illustrated embodiment, the suspension members 42a, 42b have a tensile force in the wale direction W of 47 N at 20% strain. The suspension members 42a, 42b may have an ultimate tensile strength in the wale direction W of at least 300 N, specifically at least 350 N, and more specifically at least 400 N. In the illustrated embodiment, the suspension members 42a, 42b have an ultimate tensile strength in the wale direction W of at least 415 N. The ultimate tensile strength in the wale direction W should be understood to mean the maximum force that the suspension member can withstand while being stretched in the wale direction W before breaking.


Additionally, in the wale direction W, the suspension members 42a, 42b may have a stiffness between 1.5 N/mm and 4.5 N/mm, specifically between 2 N/mm and 4 N/mm, and more specifically 2.25 N/mm and 3.75 N/mm. In the illustrated embodiment, the suspension members 42a, 42b have a stiffness of 4.55 N/mm in the wale direction W. The stiffness may vary based on the gauge (e.g., needles per inch, or needles per mm, etc.) of the knitting machine used to create the suspension member 42a, 42b. As such, the suspension members 42a, 42b may have a ratio of machine gauge (in needles per mm) to wale stiffness (in N per mm) between 0.07 and 1.4. In the wale direction W, the suspension members 42a, 42b may have at least a 100% strain at break, specifically at least 125% strain at break, and more specifically at least 150% strain at break.


Monofilament Specification and Composition

The plurality of monofilaments 58a, 58b are the primary load bearing members of the suspension members 42a, 42b. The plurality of monofilaments 58a, 58a may be bicomponent monofilaments and include a thermoplastic polyester elastomer. The plurality of monofilaments 58a, 58a may have an elliptical cross section. Each of the monofilaments 58a, 58a may have a width of at least 0.4 mm, specifically at least 0.5 mm, and more specifically at least 0.6 mm. Each of the monofilaments 58a, 58a may have a height of at least 0.3 mm, and specifically at least 0.4 mm. Each of the monofilaments 58a, 58a may have a linear density between 760 denier and 2900 denier, specifically between 1900 denier and 2300 denier, and more specifically between 2000 denier and 2200 denier. In the illustrated embodiment, each of the monofilaments 58a, 58b has a linear density of 2100 denier. The linear density may vary based on the gauge (e.g., needles per inch, or needles per mm, etc.) of the knitting machine used to create the suspension member 42a, 42b. As such, the monofilaments 58a, 58b may have a ratio of machine gauge (in needles per inch) to linear density (in denier) between 0.005 and 0.02. Linear density should be understood to mean mass per unit length of a filament or along a flow path of filaments.


Each of the monofilaments 58a, 58b may have a tensile force between 3 N and 10 N at 10% strain and specifically between 4.4 N and 9 N at 10% strain. Each of the monofilaments 58a, 58b may have a tensile force of 6.7 N at 10% strain. Each of the monofilaments 58a, 58b may have a tensile force between 9 N and 22 N at 20% strain and specifically between 11.7 N and 19.7 N at 20% strain. Each of the monofilaments 58a, 58b may have a tensile force of 15.7 N at 20% strain. Each tensile force and strain is along the length of a respective one of the monofilaments. Each of the monofilaments 58a, 58b may have an ultimate tensile strength of at least 15 N, specifically at least 20 N, and more specifically at least 22 N. The ultimate tensile strength of the monofilament should be understood to mean the maximum force that the monofilament can withstand while being stretched along the length of the monofilament before breaking. Each of the monofilaments 58a, 58b may have a stiffness between 0.5 N/mm and 1.5 N/mm, specifically between 0.75 N/mm and 1.25 N/mm, and more specifically between 0.9 N/mm and 1.1 N/mm. Each of the monofilaments 58a, 58b may have a stiffness of 1 N/mm. Similar to the linear density, the stiffness may vary based on the gauge (e.g., needles per inch, or needles per mm, etc.) of the knitting machine used to create the suspension member 42a, 42b. As such, monofilaments 58a, 58b may have a ratio of machine gauge (in needles per mm) to stiffness (in N per mm) between 0.5 and 2.6. Each of the monofilaments 58a, 58b may have between a 40% strain and 135% strain at break, specifically between 50% strain and 120%, and more specifically between 55% and 115%.


Multifilament Specification and Composition

The multifilaments 54a, 54b may be high tenacity, fully drawn yarns. In some embodiments, the multifilaments 54a, 54b may be air jet textured and have round cross-sections. The multifilaments 54a, 54b may be made of polyester. Each of the multifilaments 54a, 54b may have a linear density between 825 denier and 1225 denier, specifically between 850 denier and 1200 denier, and more specifically between 925 denier and 1125 denier. Each of the multifilaments 54a, 54b may have a linear density of 1025 denier. The linear density is the total linear density of the yarn being knitted. In embodiments where multiple yarns are used, the combined denier of the yarns may be the linear density. For example, in some embodiments, two 440 denier yarns may be used such that the multifilaments have a linear density of 880 denier. Each of the multifilaments 54a, 54b may have a filament count between 700 and 900 and specifically between 750 and 850. Each of the multifilaments 54a, 54b may have a filament count of 816. Filament count should be understood to mean the number of single filaments in a cross-section view of a single strand of multifilament. The cross-section view is perpendicular to length of the single strand of multifilament. Each filament of the multifilaments 54a, 54b may have a linear density between 0.6 denier and 2 denier, specifically between 1 denier and 1.5 denier, and more specifically between 1.2 denier and 1.4 denier. Each filament of the multifilaments 54a, 54b may have a linear density of 1.3 denier. The linear density may vary based on the gauge (e.g., needles per inch, or needles per mm, etc.) of the knitting machine used to create the suspension member 42a, 42b. As such, the multifilaments may have a ratio of machine gauge (in needles per inch) to linear density (in denier) between 0.01 and 0.03.


Each of the multifilaments 54a, 54b may have a stiffness between 0.8 N/mm and 1.1 N/mm. Similar to the linear density, the stiffness may vary based on the gauge (e.g., needles per inch, or needles per mm, etc.) of the knitting machine used to create the suspension member 42a, 42b. As such, the multifilaments 54a, 54b may have a ratio of machine gauge (in needles per mm) to stiffness (in N per mm) between 0.5 and 0.7.


Each of the multifilaments 54a, 54b may also have a tensile force between 3 N and 10 N at 10% strain and specifically between 4.4 N and 9 N at 10% strain. Each of the multifilaments 54a, 54b may have a tensile force of 6.7 N at 10% strain. Each of the multifilaments 54a, 54b may have a tensile force between 9 N and 22 N at 20% strain and specifically between 11.7 N and 19.7 N at 20% strain. Each of the multifilaments 54a, 54b may have a tensile force of 15.7 N at 20% strain. Each of the multifilaments 54a, 54b may have at least a 10% strain at break, specifically at least a 20% strain at break, and more specifically at least a 30% strain at break. Each tensile force and strain is along the length of a respective one of the multifilaments. Each of the multifilaments 54a, 54b may have an ultimate tensile strength of at least 15 N, specifically at least 18 N and more specifically at least 22 N. The ultimate tensile strength of the multifilament should be understood to mean the maximum force that the multifilament can withstand while being stretched along the length of the multifilament before breaking. Each of the multifilaments 54a, 54b may have a toughness of at least 50 kgf/mm, specifically at least 60 kgf/mm, and more specifically at least 66 kgf/mm. Toughness should be understood to mean the work capacity of the multifilament yarn (i.e., the area under the tensile curve of the multifilament yarn).


Suspension Member

Referring back to FIGS. 2 and 3, the suspension members 42a, 42b are flat panels and have slots 48a, 48b and openings 49a, 49b before the suspension members 42a, 42b are coupled to the carriers 46a, 46b. The slots 48a, 48b and the openings 49a, 49b are positioning features that help properly position the suspension members 42a, 42b during manufacturing. For example, the slots 48a, 48b and/or the openings 49a, 49b may provide visual cues to help align the suspension members 42a, 42b. The slots 48a, 48b, and the openings 49a, 49b may also provide areas for a tool to grasp or engage the suspension members 42a, 42b. In some embodiments, the suspension members 42a, 42b may have knitted pockets. In some embodiments, the suspension members 42a, 42b may have knitted tubes. In some embodiments, the suspension members 42a, 42b may have knitted loops. In some embodiments, the knit structures 50a, 50b of the seat 14 and the backrest 18 may be identical. In other embodiments, the seat 14 may have different characteristics from the backrest 18, such as a higher stiffness and a higher strength. The suspension members 42a, 42b have different dimensions and may be shaped to conform to the different shapes of the carriers 46a, 46b and frames 42a, 42b. As illustrated in FIGS. 2 and 3, the suspension members 42a, 42b have slots 48a, 48b and openings 49a, 49b. In some embodiments, the suspension members 42a, 42b may have knitted pockets. In some embodiments, the suspension members 42a, 42b may have knitted tubes. In some embodiments, the suspension members 42a, 42b may have knitted loops.


In some embodiments, the suspension members 42a, 42b may be homogenous such that the suspension members 42a, 42b each have a constant color, a constant knit and constant material properties across the areas of the suspension members 42a, 42b. In some embodiments, the suspension member 42a, 42b can include different zones, which each have different characteristics. The zones of the suspension members 42a, 42b can be aligned within the carriers 46a, 46b in order to achieve a designated purpose. For example, in one embodiment, the zones are designated to have different levels of stiffness to increase the comfort and/or support of the seating structure for a user. The zones can then be aligned within the carrier 46a, 46b so that the zones having greater stiffness are positioned in locations where more support is desired, and the zones having greater flexibility are positioned in locations were greater comfort is desired. In another embodiment, the zones can have different patterns, knits, or colors. In some embodiments, the zones can be arranged within the carriers 46a, 46b to create a certain aesthetic appearance.


Additional Fabric Construction and Composition


FIGS. 6 and 7 illustrate another knit structure 150 of a suspension member 142. The suspension member 142 is similar to the suspension members 42a, 42b discussed above and includes a plurality of multifilaments 154, 155 and plurality of monofilaments 158. The suspension member 142 may be used to form either a seat or a backrest. Unlike the suspension member 42 discussed above, the suspension member 142 has a double jersey interlock knit structure with a tunnel inlay.


The suspension member 142 may have a fabric weight between 800 g/m2 and 1200 g/m2, specifically between 900 g/m2 and 1100 g/m2, and more specifically between 1000 g/m2 and 1050 g/m2. In the illustrated embodiment, the suspension member 142 has a weight of 1017 g/m2.


In the course direction C, the suspension member 142 may have a tensile force between 71 N and 213 N at 10% strain, specifically between 106 N and 178 N at 10% strain, and more specifically between 132 N and 152 N at 10% strain. In the illustrated embodiment, the suspension member 142 has a tensile force in the course direction C of 1142 N at 10% strain. The suspension member 142 may have a tensile force in the course direction C between 135 N and 405 N at 20% strain, specifically between 202 N and 338 N at 20% strain, and more specifically between 240 N and 300 N at 20% strain. In the illustrated embodiment, the suspension member 142 has a tensile force in the course direction C of 270 N at 20% strain. The suspension member 142 may have an ultimate tensile strength in the course direction C of at least 500 N, specifically at least 650 N, and more specifically at least 750 N. In the illustrated embodiment, the suspension member 142 has an ultimate tensile strength in the course direction C of at least 785 N.


Additionally, in the course direction C, the suspension member 142 may have a stiffness between 10 N/mm and 25 N/mm, specifically between 13 N/mm and 23 N/mm, and more specifically 16 N/mm and 20 N/mm. In the illustrated embodiment, the suspension member 142 has a stiffness of 18 N/mm in the course direction C. In the course direction C, the suspension member 142 may have at least a 90% strain at break, specifically at least 100% strain at break, and more specifically at least 107% strain at break.


In the wale direction W, the suspension member 142 may have a tensile force between 20 N and 60 N at 10% strain, specifically between 30 N and 50 N at 10% strain, and more specifically between 36.5 N and 43.5 N at 10% strain. In the illustrated embodiment, the suspension member 142 has a tensile force in the wale direction W of 40 N at 10% strain. The suspension member 142 may have a tensile force in the wale direction W between 40 N and 122 N at 20% strain, specifically between 60 N and 102 N at 20% strain, and more specifically between 73 N and 89 N at 20% strain. In the illustrated embodiment, the suspension member 142 has a tensile force in the wale direction W of 81 N at 20% strain. The suspension member 142 may have an ultimate tensile strength in the wale direction W of at least 500N, specifically at least 600N, and more specifically at least 650N. In the illustrated embodiment, the suspension member 142 has an ultimate tensile strength in the wale direction W of at least 697N.


Additionally, in the wale direction W, the suspension member 142 may have a stiffness between 2 N/mm and 8 N/mm, specifically between 4 N/mm and 7 N/mm, and more specifically 4.55 N/mm and 6.05 N/mm. In the illustrated embodiment, the suspension member 142 has a stiffness of 5.3 N/mm in the wale direction W. In the wale direction W, the suspension member 142 may have at least a 100% strain at break, specifically at least 120% strain at break, and more specifically at least 130% strain at break.


The quantities of the present application may be measured per ASTM D5034-09 and per ASTM D2256.


The above properties and constructions allow the suspension materials 42a, 42b, 142a, 142b to support a user, and preferably a user in a seat. A fabric having one or more of the above discussed characteristics, may be suitable to support a user, and preferably a user in a seat. Because the suspension materials 42a, 42b, 142a, 142b are 3D knit, the suspension materials 42a, 42b, 142a, 142b may be made into the exact or near-exact shape of the seat and/or backrest and do not require excess trimming. As such, the 3D-knit suspension materials 42a, 42b, 142a, 142b generate less waste compared to woven suspension materials. Because the suspension materials 42a, 42b, 142a, 142b are 3D-knit, the suspension materials 42a, 42b, 142a, 142b may be formed “on-demand,” or one at a time, rather than in bulk. As a result, the suspension materials 42a, 42b, 142a, 142b may be made-to-order. For example, the suspension materials 42a, 42b, 142a, 142b may be individually made for each user in different colors, patterns, shapes, and/or sizes.



FIGS. 8 and 9 illustrate two examples of suspension materials 160, 164 that can be made using the above knitting techniques and properties for chair backrests. The suspension material 160 shown in FIG. 8 has an oblong rounded shape and is made in the near-exact shape of the Mirra® chair backrest sold by Herman Miller. The suspension material 164 shown in FIG. 9 has a partial trapezoidal shape with wings and is made in the near-exact shape of the Sayl® chair backrest sold by Herman Miller. Other shapes are also possible using the weft knitting processes to reduce waste during manufacture.


Various features and advantages of the invention are set forth in the following claims.

Claims
  • 1. An article of furniture comprising: a frame defining an opening; anda suspension material spanning over the opening and having a weft knit construction, the suspension material configured to support a user, the suspension material including: at least one multifilament forming a jersey knit structure which has a plurality of courses extending in a course direction and a plurality of wales extending in a wale direction, andat least one monofilament corresponding to and being inlaid in a respective one of the courses,wherein the suspension material has, in the course direction, a ratio of machine gauge, in needles per mm, to course stiffness, in N per mm, between 0.02 and 0.2 and has, in the wale direction, a ratio of machine gauge, in needles per mm, to wale stiffness, in N per mm, between 0.07 and 1.4.
  • 2. The article of furniture of claim 1, wherein the suspension material has a ratio of machine gauge, in needles per mm, to inlaid monofilament count, in ends per mm, between 0.6 and 1.4.
  • 3. The article of furniture of claim 1, wherein the suspension material is heat-finished.
  • 4. The article of furniture of claim 1, wherein the at least one monofilament is one of a plurality of monofilaments, and wherein each of the plurality of monofilaments is inlaid in a corresponding one of the plurality of courses such that each of the courses includes an inlaid monofilament.
  • 5. The article of furniture of claim 1, wherein the suspension material has a double jersey knit construction.
  • 6. The article of furniture of claim 1, wherein the suspension material has a single jersey knit construction.
  • 7. The article of furniture of claim 1, wherein the suspension material has a course stiffness of at least 8 N per mm.
  • 8. The article of furniture of claim 1, wherein the suspension material has a wale stiffness of at least 1.5 N per mm.
  • 9. The article of furniture of claim 1, wherein the suspension material has an ultimate tensile strength in the course direction of at least 300 N, and wherein the suspension material has an ultimate tensile strength in the wale direction of at least 300 N.
  • 10. An article of furniture comprising: a frame defining an opening; anda suspension material spanning over the opening and having a weft knit construction, the suspension material configured to support a user, the suspension material including: at least one multifilament forming a jersey knit structure which has a plurality of courses extending in a course direction and a plurality of wales extending in a wale direction, andat least one monofilament corresponding to and being inlaid in a respective one of the courses, the at least one monofilament having a ratio of machine gauge, in needles per mm, to stiffness, in N per mm, between 0.5 and 2.6, and having a ratio of machine gauge, in needles per inch, to linear density, in denier, between 0.005 and 0.02.
  • 11. The article of furniture of claim 10, wherein the at least one multifilament has a ratio of machine gauge, in needles per mm, to stiffness, in N per mm, between 0.5 and 0.7.
  • 12. The article of furniture of claim 10, wherein the at least one multifilament has a ratio of machine gauge, in needles per inch, to linear density, in denier, between 0.01 and 0.03.
  • 13. The article of furniture of claim 10, wherein the at least one multifilament is a high tenacity, fully drawn yarn.
  • 14. The article of furniture of claim 10, wherein the at least one multifilament is air jet textured.
  • 15. The article of furniture of claim 10, wherein the at least one monofilament has a tensile strength between 3 N and 10 N at 10% strain.
  • 16. A suspension material for use with an article of furniture, the suspension material comprising: at least one multifilament forming a jersey knit structure which has a plurality of courses extending in a course direction and a plurality of wales extending in a wale direction; andat least one monofilament corresponding to and being inlaid in a respective one of the courses, the at least one monofilament having a ratio of machine gauge, in needles per mm, to stiffness, in N per mm, between 0.5 and 2.6, and having a ratio of machine gauge, in needles per inch, to linear density, in denier, between 0.005 and 0.02;wherein the suspension material has, in the course direction, a ratio of machine gauge, in needles per mm, to course stiffness, in N per mm, between 0.02 and 0.2 and has, in the wale direction, a ratio of machine gauge, in needles per mm, to wale stiffness, in N per mm, between 0.07 and 1.4.
  • 17. The suspension material of claim 16, wherein the suspension material has an ultimate tensile strength in the course direction of at least 300 N, and wherein the suspension material has an ultimate tensile strength in the wale direction of at least 300 N.
  • 18. The suspension material of claim 16, wherein the suspension material has a fabric weight between 315 g/m2 and 945 g/m2.
  • 19. The suspension material of claim 16, wherein the suspension material has a course stiffness of at least 8 N per mm and a wale stiffness of at least 1.5 N per mm.
  • 20. The suspension material of claim 16, wherein the suspension material has a ratio of machine gauge, in needles per mm, to inlaid monofilament count, in ends per mm, between 0.6 and 1.4.
CROSS-REFERENCE TO RELATED APPLICATION

This application claims priority to U.S. Provisional Patent Application No. 63/405,088, filed Sep. 9, 2022, the entire contents of which are incorporated herein by reference.

Provisional Applications (1)
Number Date Country
63405088 Sep 2022 US