The present invention relates to seating units, and more particularly relates to a chair having a formed cushion, where the cushion is shaped to mate with a stiffener in a manner adapted to facilitate subassembly into an upholstery sock, and also shaped to optimize comfort and appearance in the final seating product. Further, the present invention concerns methods of assembly related to the above.
Many chairs include a back structure covered by an upholstery subassembly, where the upholstery subassembly forms a sock-like hollow covering that can be pulled onto the back structure to aesthetically cover all or part of the back structure. For example, see U.S. Pat. No. 6,425,637 to Peterson. A common problem in many such chair designs is that the sock must be tight enough to eliminate unattractive wrinkles and to eliminate loose fabric sections on the upholstery, but must not be so tight as to prevent the sock from being slipped onto the back structure or to cause distortions to its cushion during assembly. Quality problems often occur during assembly due to normal manufacturing variations in stitching and variations in part dimensions and material properties such as elasticity, compressibility, and tensile strength. Also, traditional polyurethane foam cushion material tends to frictionally drag on the sock (or grip the back structure if it is part of the upholstery subassembly) during assembly. Each of these conditions can result in distortions and non-uniformities in the cushion and/or in the upholstery after assembly (e.g., wrinkles, distortions, puckers, loose fabric sections, irregular corners, etc.). It is often difficult to know whether the distortions and non-uniformities are caused by conditions prior to, during, or after assembly . . . or a combination thereof. The problems tend to be especially evident at corners and feature lines of the back where dimensional variations in mating components and stitch lines are easily seen. Depending on the chair design, distortions and non-uniformities can be very unsatisfactory to consumers (particularly in higher end chairs), since such distortions and non-uniformities are interpreted as low quality. Thus, an improvement is desired that facilitates construction of an upholstery subassembly, and that facilitates assembly of the upholstery subassembly to a back structure. Further, an improvement is desired that helps eliminate or at least control distortions and non-uniformities. It is believed that part of a solution to the present problems is connected to managing and distributing the tension and stress between the cushion and the upholstery sock, particularly at highly visible corners.
Loose unsupported sections of upholstery are particularly difficult to control in large flat or recessed areas where the upholstery is poorly supported or totally unsupported. For example, if the upholstery is not properly and uniformly tensioned in all directions, the material hangs loose and sags. But if the upholstery is unevenly tensioned, the material forms undulating ridges and stretch-related channels that extend parallel a direction of the “over-tension”. If the upholstery is simply too highly tensioned, the cushion may become locally distorted via uneven compression of the cushion, thus also causing visual defects. These conditions are especially problematic in large relatively-flat areas, such as along a front middle area of a chair back (i.e., a lumbar region) or on a center of a relatively flat-topped chair seat. Also, these conditions will occur when a concave face of a back support shell (i.e., a shallow depression surrounded by a ring of marginal material higher than a bottom of the shallow depression), since tension on the upholstery material will cause the upholstery material to bridge across the bottom at a location spaced above the bottom, . . . instead of pulling the upholstery against the bottom of the shallow depression. Typically, these problems may worsen over time and with use of the chair as the fabric stretches and as the cushion takes on a compression set.
It is noted that Peterson U.S. Pat. No. 6,425,637 discloses a chair construction of interest, including a PETE or PET cushion of non-woven fibers (see FIGS. 3-6 and 14), an upholstery sock-like structure of interest (see FIGS. 3-7 and column 6, lines 15+) and related assembly method (see FIGS. 3-7 and 13). However, improvement is desired so that the cushion holds itself on the cushion stiffener during assembly of the upholstery sock onto the cushion and cushion stiffener and to eliminate wrinkles and unevenly stretched areas after the assembly. Also, improvement is desired to better secure the cushion stiffener onto the back support shell.
Sometimes attempts are made to control the upholstery by adhering the upholstery to the cushion under the problem area. However, adhesives are expensive to purchase, and to apply . . . and further are not always a solution to the appearance problem. Further, adhesives can affect compression of the cushion and adversely affect user comfort. Still further, over time the cushion and upholstery may stretch and give, resulting in loose unsupported sections of upholstery.
One attractive style for chairs comprises a layered look where the upholstery subassembly (including a cushion) is attached only to a face of a support structure on a chair back or seat. In such chair designs, it is important to maintain proper centered placement of the upholstery subassembly on the support structure (i.e., to prevent the cushion and/or upholstery from creeping or “walking” toward one side or another of the support structure) to avoid warranty and appearance problems after significant use of the chair. Further, it is important that the attachment of the upholstery subassembly to the support structure be both secure, relatively thin, and preferably hidden, so that the style can be maintained without forcing the chair to have a thick heavy appearance, and without forcing the chair to include multiple visible screw heads or containment structure. Further, it is desirable to provide an attachment system that eliminates screws and time-consuming assembly steps, and that can be formed integrally with the underlying mating components.
Thus, a system having the aforementioned advantages and solving the aforementioned problems is desired.
In one aspect of the present invention, an upholstered component includes a support having edge portions, a pad of formable polymeric fibers with at least one formed edge that wraps over at least one of the edge portions of the support, and an upholstery cover shaped to at least partially cover the support and the pad. The formed edge is sufficiently pre-formed and structural to retain the cushion in place on the support as the upholstery cover is positioned on the support and pad and as the upholstery cover is extended over the formed edge and the one edge portion.
In another aspect of the present invention, a seating unit includes a back support with a face surface having a first pattern of fasteners, and a cushion assembly engaging the face surface and including a second pattern of fasteners. The first and second pattern of fasteners are configured to matingly engage when the cushion assembly is moved in a first direction parallel the face surface during assembly of the cushion assembly onto the back support, and are configured to resiliently interlock in a self-retained position when the cushion assembly reaches a fully-assembled position on the back support.
In yet another aspect of the present invention, a method for stress-relieving upholstery comprises steps of providing a furniture unit including a support having corners, and providing a pad of formable polymeric fibers and having formed edges. The method further includes positioning the pad on a front of the support but with the formed edges extending to rearward of the corners of the support, providing an upholstery cover shaped to cover the support and the cushion including the corners, and positioning the upholstery cover on the support and the cushion to cover the support and the cushion. The method still further includes stress-relieving at least the corners of the cushion and the upholstery cover to reduce distortions and objectionable wrinkles in the upholstery cover at the corners by applying hot gases to cause the polymeric fibers and also the upholstery cover to relax to a state of minimized balanced tension
In another aspect of the present invention, a method of constructing a seating unit comprising steps of providing a support panel with a concave front surface, and providing a cushion of non-woven polymeric fibers engaging the front surface, the cushion being formed to have a shape with a rear surface matching the front surface. The method further includes assembling an upholstery sheet onto the support panel and the cushion, the upholstery sheet being tensioned, and thermally treating the assembly of the support panel, the cushion and the upholstery sheet to cause the cushion to take on a relaxed state that both fills the concave recess and that also stress-relieves the cushion and upholstery to cause a state of minimized tension.
In still another aspect of the present invention, a method of upholstering a support member with edges, comprising steps of providing a cushion of formable polymeric fibers with at least one formed edge, wrapping the at least one edge of the cushion around an edge of the support member, and setting the formed edge of the cushion in the wrapped condition.
In yet another aspect of the present invention, a method of assembly comprising steps of providing a blank of formable polymeric fibers capable of forming a cushion, forming edges of the blank to define a recess, and placing a support member into the recess to form a pre-assembly.
In another aspect of the present invention, a method of assembly comprises steps of providing a blank of formable polymeric fibers, the blank including a perimeter, placing a support member against the blank with at least one edge of the support member extending generally along but inboard of an associated part of the blank's perimeter, and forming the associated part of the blank onto a rear of the one edge of the support member, with the formed associated part mechanically retaining the blank in place on the support member.
These and other aspects, objects, and features of the present invention will be understood and appreciated by those skilled in the art upon studying the following specification, claims, and appended drawings.
A seating unit 30 (
The cushion assembly 37 (
The illustrated back support 36 (
The cushion assembly 37 (
The illustrated cushion (stiffener) support 40 (
When the upholstery sock with front panel 50 is initially pulled over and then onto the support 40 and cushion 41, the upholstery front panel 50 is tensioned, but its tension is non-uniform in some areas and the cushion 41 is non-uniformly compressed. By applying (i.e. “hitting”) the cushion 41 and upholstery sock 42 with steam or hot air (see
Specifically, after the step of applying steam to relieve tension in the upholstery sock 42 and to reform the cushion 41, especially after the sock 42 and cushion 41 begin to cool, there is a state of “minimized balanced tension” (i.e., stress relieved, but still having some tension) that develops between the upholstery sock 42 and the cushion 41. Even after being thermal stress-relieved, the (cooled) cushion 41 still exerts some compressive forces against the material of the upholstery sock 42, and the upholstery material still has some tensile forces pulling against the cushion 41. This results in an optimal condition especially at the upper outer corners of the present back construction and on the front of the present back construction that leads to a more consistent appearance. The optimal condition includes the fact that the upholstery sock 42 is adequately and more uniformly tensioned in all directions to reduce undesired, uneven wrinkles and to eliminate undesired loose sections of material. Also, the optimal condition includes the fact that the upholstery sock 42 is drawn uniformly snug in the upper outer corners, without over-tightening in the corners and without undesired undulations in any seams that extend along the corners around a perimeter of the back construction. Also, the optimal condition includes the fact that the cushion 41 has different thicknesses, but good support is provided to a seated user as the user initially begins to sit in the chair (i.e., as the user initially engages the upholstery sock and receives support by initially compressing the cushion). Further, the optimal condition includes the fact that the support provided by the cushion is widespread and uniform. It is noted that the non-woven fibrous PETE cushion 41 provides an almost linear compression resistance which, as the user finally sits in the chair (i.e., as the user fully engages the upholstery sock and receives full support from the cushion), the uniformity of support is based on the remaining compressibility of the cushion and is consistent through the entire front surface. Further, the optimal condition includes the fact that the cushion 41 provides a desired rate of resistance to compression at specific thicknesses, regardless of the pre-formed shape, such that the user feels the same amount of pressure when the cushion has a specific amount of compression remaining. This allows the chair designer to accurately control the distribution of support across the front surface of the chair, and allows the designer to control the support received in specific regions on the front surface in a way not previously possible. Another desirable attribute is that in the present back construction, all major components can be separated and recycled, such that they are environmentally friendly and also can be more easily refurbished or repaired.
The back shell 36 in its thoracic region (
The edge pre-form takes the forming process (
In station just prior to step 71 (see
In steps 72/73 (
The steam stress relieving process is not totally dissimilar to the thermal activation process used in many products with a significant exception. No adhesive layers are used in the illustrated process. In traditional processes for forming foam and attaching upholstery to the foam, thermal activated adhesive is on the top of the cushion and the top of the topper pad. When the assembly is placed into the tool and steam is applied, the adhesive activates and wets out, resulting in the fabric being bonded to the topper foam and the topper foam being bonded to the core foam. During the present inventive process, the steam also allows the fabric to “stress relieve” meaning that the fabric relaxes in high stress areas and constricts in low stress areas. The result is a cushion assembly 37 with nicer form and fewer undesired wrinkles.
It is contemplated that the present article and processes can be used for forming more than just backs of chairs. In particular, it is contemplated that the present process can be used to form other chair parts such as armrests and seats, and further can be used to form non-chair parts such as covers and panel skins for partition panels and/or for automobile components (such as consoles and inner door panels), and the like.
It is to be understood that variations and modifications can be made on the aforementioned structure without departing from the concepts of the present invention, and further it is to be understood that such concepts are intended to be covered by the following claims unless these claims by their language expressly state otherwise.
This application is a divisional application of Ser. No. 11/296,679, filed Dec. 7, 2005, now U.S. Pat. No. 7,490,392, entitled SEATING UNIT WITH FORMED CUSHION, AND MANUFACTURING METHOD (now U.S. Pat. No. 7,490,392, issued Feb. 17, 2009).
Number | Name | Date | Kind |
---|---|---|---|
2358438 | Beachley | Sep 1944 | A |
3101218 | Baermann | Aug 1963 | A |
3122829 | Schaad et al. | Mar 1964 | A |
3139307 | Hawley et al. | Jun 1964 | A |
3288529 | Koch | Nov 1966 | A |
3314721 | Smith | Apr 1967 | A |
3439397 | Marshak | Apr 1969 | A |
3983614 | Koepke et al. | Oct 1976 | A |
4365840 | Kehl et al. | Dec 1982 | A |
4544205 | Molnar | Oct 1985 | A |
4561695 | MacCready | Dec 1985 | A |
4718153 | Armitage et al. | Jan 1988 | A |
4946220 | Wyon et al. | Aug 1990 | A |
5005908 | Young | Apr 1991 | A |
5169580 | Marcus | Dec 1992 | A |
5294392 | Marcus | Mar 1994 | A |
5366678 | Nomizo et al. | Nov 1994 | A |
5482665 | Gill | Jan 1996 | A |
5492662 | Kargol et al. | Feb 1996 | A |
5494627 | Kargol et al. | Feb 1996 | A |
5520441 | Citton | May 1996 | A |
5569425 | Gill et al. | Oct 1996 | A |
5571465 | Gill et al. | Nov 1996 | A |
5679197 | Haupt et al. | Oct 1997 | A |
5743982 | Marfilius et al. | Apr 1998 | A |
5935364 | Groendal et al. | Aug 1999 | A |
5957534 | Wilkerson et al. | Sep 1999 | A |
6003950 | Larsson | Dec 1999 | A |
6109688 | Wurz et al. | Aug 2000 | A |
6135562 | Infanti | Oct 2000 | A |
6220661 | Peterson | Apr 2001 | B1 |
6221292 | Carroll, III | Apr 2001 | B1 |
6394546 | Knoblock et al. | May 2002 | B1 |
6425637 | Peterson | Jul 2002 | B1 |
6499801 | Peterson et al. | Dec 2002 | B1 |
6726278 | Albright et al. | Apr 2004 | B1 |
7111373 | Shimano et al. | Sep 2006 | B2 |
20030026970 | Hernandez et al. | Feb 2003 | A1 |
20050023879 | Drajan | Feb 2005 | A1 |
20070137014 | Montgomery | Jun 2007 | A1 |
Number | Date | Country |
---|---|---|
550954 | Jul 1993 | EP |
02200296 | Aug 1990 | JP |
06015070 | Jan 1994 | JP |
06269581 | Sep 1994 | JP |
Number | Date | Country | |
---|---|---|---|
20090015054 A1 | Jan 2009 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11296679 | Dec 2005 | US |
Child | 12235241 | US |