Second Generation Dengue Vaccine

Information

  • Research Project
  • 7921691
  • ApplicationId
    7921691
  • Core Project Number
    R43AI084291
  • Full Project Number
    5R43AI084291-02
  • Serial Number
    84291
  • FOA Number
    PA-06-134
  • Sub Project Id
  • Project Start Date
    9/1/2009 - 15 years ago
  • Project End Date
    8/31/2012 - 12 years ago
  • Program Officer Name
    CASSETTI, CRISTINA
  • Budget Start Date
    9/1/2010 - 14 years ago
  • Budget End Date
    8/31/2012 - 12 years ago
  • Fiscal Year
    2010
  • Support Year
    2
  • Suffix
  • Award Notice Date
    9/3/2010 - 14 years ago
Organizations

Second Generation Dengue Vaccine

DESCRIPTION (provided by applicant): Dengue (DEN) is the most important arthropod-borne viral infection of humans with about 100 million cases and 25,000 deaths annually, threatening over 3.5 billion people worldwide. The dengue viruses cause dengue fever (DF), dengue hemorrhagic fever (DHF), and dengue shock syndrome (DSS), and are endemic throughout the world's subtropical and tropical regions. To date, there is no effective vaccine to prevent against DF and no drug treatment for the disease. Dengue infection is caused by one of four different RNA viruses: dengue type 1 (DEN-1), DEN-2, DEN-3 and DEN-4. For a dengue vaccine to be safe and effective, it must be capable of neutralizing all four of the dengue viruses. Inviragen's tetravalent DEN vaccine (DENVax) consists of the live attenuated DEN-2 PDK-53 virus and three chimeras expressing the structural genes (prM and E) from DEN-1, DEN-3 and DEN-4, and retaining the genetic alterations responsible for the safety of the original DEN-2 vaccine. We have demonstrated the safety and efficacy of DENVax in AG129 mice and monkeys. In these studies we have identified tetravalent formulations that induce neutralizing antibodies to all four DENV serotypes. However, the responses to DENVax-4 were limited by interference from the other, more robust chimeras. In this proposal, we will test the hypothesis that the immune responses to the DENVax-4 vaccine construct can be further optimized through genetic manipulation of the DENVax-4 infectious clone. We propose to design and characterize a new chimeric DEN2/4 vaccine, and test the safety and efficacy of this vaccine in mice and monkeys. This proposal uniquely utilizes resources, facilities and reagents available at Inviragen Inc, CDC, and the University of Wisconsin-Madison. The development of an effective dengue vaccine represents an important approach to the prevention and control of this global emerging disease. Inviragen's long term goal is to develop a safe and effective dengue vaccine. PUBLIC HEALTH RELEVANCE: Dengue virus (DEN), a mosquito-borne RNA virus, is the most important arthropod-borne viral infection of humans with about 100 million cases and 25,000 deaths annually. We are developing a safe and effective tetravalent dengue vaccine that will protect against all four dengue serotypes. Such a vaccine would protect U.S. travelers from dengue infection, and significantly improve global public health as dengue threatens over 3.5 billion people worldwide.

IC Name
NATIONAL INSTITUTE OF ALLERGY AND INFECTIOUS DISEASES
  • Activity
    R43
  • Administering IC
    AI
  • Application Type
    5
  • Direct Cost Amount
  • Indirect Cost Amount
  • Total Cost
    299993
  • Sub Project Total Cost
  • ARRA Funded
    False
  • CFDA Code
    855
  • Ed Inst. Type
  • Funding ICs
    NIAID:299993\
  • Funding Mechanism
    SBIR-STTR
  • Study Section
    ZRG1
  • Study Section Name
    Special Emphasis Panel
  • Organization Name
    INVIRAGEN, INC.
  • Organization Department
  • Organization DUNS
    141588801
  • Organization City
    FORT COLLINS
  • Organization State
    CO
  • Organization Country
    UNITED STATES
  • Organization Zip Code
    805259769
  • Organization District
    UNITED STATES