The present invention relates to filters generally and, more particularly, to a method and/or apparatus for implementing a second order active high-pass filter with cross-coupled feedback for Q enhancement.
Many conventional circuits need a high order (greater than one) high-pass filter with a sharp band pass characteristic. Conventional approaches for implementing high-pass filters tend to use a passive approach or an active approach. Conventional active approaches use a number of transistors (i.e., 4 or more active transistors for a differential implementation, 2 or more transistors for a single ended implementation) to implement a second order filter. By implementing a number of active transistors, the overall die area of such an implementation is often substantial. For certain designs, such as preamplifiers in drive systems, integrated circuit real estate needs to be kept to a minimum.
It would be desirable to implement a second order high-pass filter with cross-coupled feedback for implementing Q enhancement.
The present invention concerns an apparatus comprising an input circuit, a cross coupled active circuit and an output circuit. The input circuit may be configured to generate a first portion of an intermediate signal in response to an input signal. The cross coupled active circuit may be configured to generate a second portion of the intermediate signal in response to a feedback of an output signal. The output circuit may be configured to generate the output signal in response to the intermediate signal. The output signal may pass frequencies above a target frequency.
The objects, features and advantages of the present invention include providing a filter that may (i) provide second order high pass filter, (ii) provide cross coupled feedback, (iii) provide Q enhancement, (iv) filter out random offsets and/or (v) be implemented using a small amount of chip area.
These and other objects, features and advantages of the present invention will be apparent from the following detailed description and the appended claims and drawings in which:
Specifications for the certain electronic designs, such as a hard disc drive (HDD) preamplifier circuit, include the need for a higher order (e.g., >1) high-pass filter. Sharp passband characteristics (e.g., Q greater than 0.5) are also desirable for certain designs. Higher order filters tend to use more chip area. It would be desirable to implement such a filter while minimizing silicon area.
Referring to
Referring to
The circuit 110 generally comprises a capacitor (e.g., C1P), a capacitor (e.g., C1N), a transistor (e.g., Q3P), and a transistor (e.g., Q3N). The circuit 112 generally comprises a transistor (e.g., Q2P) and a transistor (e.g., Q2N). The circuit 114a generally comprises a transistor (e.g., Q1P) and a capacitor (e.g., C2P). The circuit 114b generally comprises a transistor (e.g., Q1N) and a capacitor (e.g., C2N). The transistor Q1P may receive a signal (e.g., OUTBIAS). The transistor Q1N may also receive the signal OUTBIAS. The circuit 116 may be implemented as a current source (e.g., I1), a current source (e.g., I2) and a current source (e.g., I3). The transistors in the circuit 110, the circuit 112 and/or the circuits 114a-b may be implemented, in one example, as NPN bi-polar transistors. However, the particular type of transistors implemented may be varied to meet the design criteria of a particular implementation. For example, PNP bi-polar transistors may be used to implement the circuit 110, the circuit 112 and/or the circuits 114a-b. In another example (to be described in more detail in connection with
A target frequency (or resonant frequency) may be set (or adjusted) by appropriate choice of the values Gm of each of the transistors Q1P, Q2P, Q3P, Q1N, Q2N, and/or Q3N and/or the value of C for each of the capacitors C1P, C2P, C1N, and/or C2N. In one example, the values Gm and C may be implemented as fixed values. In another example, the values Gm and C may be trimmed (or tuned) post-production. The particular type of adjustments provided may be varied to meet the design criteria of a particular implementation. In one example, the signal OUTBIAS may be a constant (e.g., DC) voltage that may set the output common mode of the circuit 100. The signal OUTBIAS generally has no effect on the filter performance of the circuit 100. The signal OUTBIAS may be generated internally or externally to the circuit 100.
In one example, the transistor Q3P may be configured as a diode. In another example, the transistor Q3P may be configured as a resistor. Similarly, the transistor Q3N may be configured as a resistor or as a diode. In one example, the signal OUTBIAS presented to the transistor Q1P and/or the transistor Q1N may be the same value. However, the signal OUTBIAS presented to the base of the transistor Q1P, in certain implementations, may be slightly varied from the signal OUTBIAS presented to the base of the transistor Q1N. In such an example, a DC offset between the output signals VOP and VON may be implemented.
The circuit 100 may be used to implement a low area multiple pole filter. In one example, each pole may provide approximately a 20 dB/decade of roll-off. For example, one pole may provide a slope that drops off by about 20 dB for a 10× decrease in frequency (to be illustrated in more detail in connection with
Referring to
Referring to
Referring to
Referring to
Referring to
Referring to
The transfer function of the circuit 100 may be determined by a resonant frequency (e.g., ωo) and either Q or a damping ratio. The resonant frequency ωo is normally considered the frequency where half of the phase shift through the filter 100 has occurred. In general, the resonant frequency ωo may be the frequency where the transition from the stop-band to the pass-band occurs. For a high-pass filter, frequencies above the resonant frequency ωo point pass through, while frequencies below the resonant frequency w, are filtered out.
The value Q may be defined as the gain of the circuit 100 at the resonant frequency ωo. The value Q may be used as an indirect measure of the peaking in the circuit 100. In general, a higher value of Q means more peaking.
The transfer function of the circuit 100 may be defined by the following equation EQ1:
The resonant frequency (in radians/sec) may be defined by the following equation EQ2:
The value Q of the filter 100 may be defined by the following equation EQ3:
By selectively assigning the parameters GM and/or C, the resonant frequency ωo and the value Q of the circuit 100 may be tuned. For example, if all Gm terms are set equal, and both C terms are set equal, then ωo=Gm/C and Q=1.
Also, as shown in the equation EQ3, the inclusion of feedback (e.g., the Gm2 term) generally increases the Q of the circuit 100. Without the feedback, the circuit 100 cannot normally achieve a Q greater than 0.5.
The various signals of the present invention are generally “on” (e.g., a digital HIGH, or 1) or “off” (e.g., a digital LOW, or 0). However, the particular polarities of the on (e.g., asserted) and off (e.g., de-asserted) states of the signals may be adjusted (e.g., reversed) accordingly to meet the design criteria of a particular implementation.
The present invention may also be implemented by the preparation of ASICs (application specific integrated circuits), Platform ASICs, FPGAs (field programmable gate arrays), PLDs (programmable logic devices), CPLDs (complex programmable logic device), sea-of-gates, RFICs (radio frequency integrated circuits), ASSPs (application specific standard products), one or more integrated circuits, one or more chips or die arranged as flip-chip modules and/or multi-chip modules or by interconnecting an appropriate network of conventional component circuits, as is described herein, modifications of which will be readily apparent to those skilled in the art(s).
While the invention has been particularly shown and described with reference to the preferred embodiments thereof, it will be understood by those skilled in the art that various changes in form and details may be made without departing from the scope of the invention.
Number | Name | Date | Kind |
---|---|---|---|
5317216 | Hosoya et al. | May 1994 | A |
5506542 | Hamano et al. | Apr 1996 | A |
5708389 | Gabara | Jan 1998 | A |
6133784 | Gregoire | Oct 2000 | A |
6476676 | Tanaka et al. | Nov 2002 | B1 |
6744306 | Yonezawa | Jun 2004 | B2 |
6980055 | Gharpurey | Dec 2005 | B2 |
7639069 | Li et al. | Dec 2009 | B2 |
7777593 | Weitzenberger | Aug 2010 | B2 |
7817757 | Hidaka | Oct 2010 | B2 |
7843287 | Masuda et al. | Nov 2010 | B2 |
8274326 | Boecker | Sep 2012 | B2 |
20110140785 | Lian et al. | Jun 2011 | A1 |
Number | Date | Country | |
---|---|---|---|
20130154726 A1 | Jun 2013 | US |