This specification is based upon and claims the benefit of priority from UK Patent Application Number 1710076.9 filed on 23 Jun. 2017, the entire contents of which are incorporated herein by reference.
Aspects of the present disclosure relate to control of secondary flow. Aspects of the present disclosure relate to removal of boundary layer flow, for example in a flow passage.
During operation of a gas turbine engine, flow generally passes through a series of rotor stages and stator stages. Each rotor stage comprises a plurality of aerofoils in the form of rotating rotor blades. Each stator stage comprises a plurality of aerofoils in the form of static stator vanes. As the flow passes through a stage, the aerofoils cause the flow to turn, resulting in a differential pressure field in the flow.
This differential pressure field in the flow results in the formation of so-called secondary flow. Such secondary flow (or secondary flows) may be described as flow that is not aligned with the mainstream flow, such as cross-flows or vortices. An example of secondary flow through a rotor stage or stator stage of a gas turbine engine is the formation of a vortex that typically forms on the suction surface (typically towards the rear of the suction surface) of an aerofoil in either a rotor stage or a stator stage. Such a vortex, and indeed secondary flow in general, represents losses and/or non-uniformities in the flow so is generally unwanted.
It is desirable to be able to reduce the secondary flow in turbomachinery, for example to be able to reduce the secondary flow through rotor and/or stator stages of a gas turbine engine.
According to an aspect, there is provided a flow passage. The flow passage comprises a first aerofoil having a first camber. The flow passage comprises a second aerofoil having a second camber and being spaced from the first aerofoil in a pitch direction. The flow passage comprises an endwall between the first and second aerofoils. The first and second aerofoils extend from the endwall in a spanwise direction of the aerofoils. A slot is formed in the endwall for removal of boundary layer flow from the endwall, the slot having a length direction and a width direction, with the length dimension being greater than the width dimension, and the length direction is more aligned with the direction of the first camber than it is with the pitch direction. The minimum distance between the slot and the camber line of the first aerofoil is in the range of from 0.25 and 4 times (for example 0.5 and 3 times, for example 1 and 2 times) the minimum distance between the slot and the camber line of the second aerofoil at all points along the length of the slot.
The slot may be an opening formed in the endwall. The length dimension may be the longest dimension of the slot. The length dimension may be referred to as the longitudinal dimension. The length direction may be is more aligned with the direction of the first camber than it is with the pitch direction along the entire length of the slot.
According to an aspect, there is provided a method of removing boundary layer flow from the flow through a stage of a gas turbine engine, the stage comprising multiple rotor blades or stator vanes extending from an endwall. The method comprises determining the flow direction of mainstream flow through the stage during use. The method comprises determining the flow direction of boundary layer flow next to the endwall during use. The method comprises providing a slot in the endwall between two neighbouring stator vanes or rotor blades, the slot having a length direction and a width direction with the length dimension being greater than the width dimension. The method comprises aligning the length direction more closely to the flow direction of mainstream flow through the stage during use than to the flow direction of the boundary layer flow next to the endwall during use. The method comprises positioning the slot such that the minimum distance between one of the stator vanes or rotor blades is in the range of from 0.25 and 4 times (for example 0.5 and 3 times, for example 1 and 2 times) the minimum distance between the slot and the respective neighbouring stator vane or rotor blade at all points along the length of the slot.
According to an aspect, there is provided a gas turbine engine comprising: a rotor stage comprising rotor blades extending from a rotor endwall; and a stator stage comprising stator vanes extending from a stator endwall. The rotor endwall and/or the stator endwall comprises a slot provided between respective neighbouring rotor blades or stator vanes for removal of boundary layer flow from the endwall, the slot having a length direction and a width direction with the length dimension being greater than the width dimension. The length direction is more closely aligned with the streamwise direction of the main flow through the respective stage than it is with the direction perpendicular to the streamwise direction of the main flow through the respective stage. The streamwise direction of the main flow may be the streamwise direction during use. The minimum distance between the slot and one of the stator vanes or rotor blades is in the range of from 0.25 and 4 times (for example 0.5 and 3 times, for example 1 and 2 times) the minimum distance between the slot and the respective neighbouring stator vane or rotor blade at all points along the length of the slot.
According to an aspect, there is provided a turbomachine comprising a flow passage as described and/or claimed herein. The turbomachine may be an axial flow turbomachine. The turbomachine may be a gas turbine engine, for example a turbofan gas turbine engine. Wherever the term “turbomachine” is used herein, it may refer to a gas turbine engine of any sort.
According to an aspect, there is provided an axial flow turbomachine, such as a gas turbine engine. The axial flow turbomachine may comprise at least one rotor stage comprising a plurality of rotor blades. The axial flow turbomachine may comprise at least one stator stage comprising a plurality of stator vanes. The axial flow turbomachine comprises a flow passage as described and/or claimed herein. In such an arrangement, the first and second aerofoils of the flow passage are either neighbouring rotor blades of a rotor stage or neighbouring stator vanes of a stator stage. Such an arrangement comprises a slot in an endwall, such as that described and/or claimed herein. The rotor stage(s) and/or stator stage(s) having the slot may be part of a compressor or a turbine.
In an axial flow turbomachine, the spanwise direction of the aerofoils in the flow passage may be the same as the radial direction of the turbomachine. The pitch direction may be the same as the circumferential direction. The slot may be arranged such that the length direction is more aligned with the direction of the first camber than it is with the circumferential direction. The slot may be arranged such that the length direction is more aligned with the axial direction than it is with the circumferential direction.
An axial flow turbomachine may comprise at least one rotor stage that has a slot (such as described and/or claimed herein) formed between each pair of neighbouring rotor blades. The rotor stage may be, for example, the fan of a turbofan gas turbine engine. The slot may be formed in an annulus filler. The endwall may be a rotating endwall, such as an annulus filler.
An axial flow turbomachine may comprise at least one stator stage that has a slot (such as described and/or claimed herein) formed between each pair of neighbouring stator vanes. The endwall may be a stationary (non-rotating) endwall. The stator stage may be, for example, an outlet guide vane (or OGV) of a gas turbine engine.
By arranging the slot as described and/or claimed herein, the secondary flow (for example the losses from the secondary flow) can be reduced. A significant proportion (for example the majority, or substantially all) of the boundary layer flow (for example in terms of mass flow) may be removed through the slot, but with minimal (for example substantially no) impact on the freestream (or mainstream) flow. The boundary layer may be “overturned” during use compared with the freestream flow. This may be because it has lower momentum that the mainstream flow, and so the pressure differential created by the aerofoils—which is substantially consistent through the flow (i.e. through both the boundary layer flow and the freestream flow)—has a greater turning effect on the low momentum boundary layer flow than on the freestream flow. This “overturned” boundary layer flow may itself be considered as secondary flow and/or may generate other secondary flow structures, such as vortices formed on the suction surface of aerofoils where the overturned boundary layer flow impinges the aerofoil surface. Accordingly, removing (or reducing) the boundary layer through the slot may reduce the secondary flow, thereby reducing losses and improving efficiency.
Arranging the slot as described and/or claimed herein may be particularly effective in removing the overturned boundary layer flow.
Positioning the slot in a central region of the passage between the blades (for example the such that the minimum distance between the slot and the camber line of the first aerofoil is in the range of from 0.25 and 4 times the minimum distance between the slot and the camber line of the second aerofoil at all points along the length of the slot) may be particularly effective in removing the overturned boundary layer, for example because in this generally central region of the flow passage the difference in flow direction between the boundary layer flow and the freestream flow may be much greater than towards the surfaces of the aerofoils, where both the boundary layer and the freestream flow are physically constrained by the aerofoil surfaces.
The first and second aerofoils of the flow passage may be substantially the same as each other. The first camber of the first aerofoil may be the same as the second camber of the second aerofoil.
The length direction of the slot may be within 45 degrees of the direction of the first camber, for example within 40 degrees, for example within 35 degrees, for example within 30 degrees, for example within 25 degrees, for example within 20 degrees, for example within 15 degrees, for example within 10 degrees, for example within 5 degrees, for example generally and/or substantially aligned with the direction of the first camber.
The slot (that is, the length direction of the slot) may be said to be more aligned with the mainstream flow direction than perpendicular to the mainstream flow direction during use. For example, the slot (that is, the length direction of the slot) may be generally aligned with the mainstream flow direction during use. For example, the slot (that is, the length direction of the slot) may be within 45 degrees, for example within 40 degrees, for example within 35 degrees, for example within 30 degrees, for example within 25 degrees, for example within 20 degrees, for example within 15 degrees, for example within 10 degrees, for example within 5 degrees, for example generally and/or substantially aligned with the mainstream flow direction during use. The length direction of the slot may change along the slot, for example so as to be substantially aligned with the camber direction along its length.
The slot may take any desired form compatible with the present disclosure. For example, the slot may be an opening in an otherwise smooth, continuous surface. By way of further example, the slot may be raised on one side relative to the other side, for example one of the sides in the length direction may be raised relative to the other side in the length direction.
The slot may be said to be formed between a pressure surface of the first aerofoil and a suction surface of the second aerofoil. The slot may be an opening formed in the endwall that points towards the pressure surface of the first aerofoil. For example, such an opening may point in a direction (that is, may be normal to a direction) that has a component, for example a major component, towards the pressure surface of the first aerofoil.
An edge of the slot that is closest to the pressure surface of the first aerofoil may be lower (which may mean radially inboard in an axial flow turbomachine and/or in the opposite direction to the direction in which the first and second aerofoils extend from the endwall) than an edge of the slot that is closest to the suction surface of the second aerofoil. For example, the endwall may be said to be raised (i.e. in the spanwise/radial direction) on the side of the slot closer to the suction surface of one blade compared to the side of the slot closer to the pressure surface of another blade. This may create a “mouth” into which the overturned boundary layer flow may be captured.
The flow may simply flow into the slot rather than being sucked into the slot. This may utilise a ram effect to capture the flow. Alternatively, suction may be used to draw flow into the slot using a static pressure differential. In such an arrangement, the slot may be connected to a suction source at its downstream end. The suction source may be passive, in that a substantially constant suction is applied throughout operation, or may be active, in that the suction (for example the downstream pressure) may be modulated and/or controlled depending on the operating condition, for example depending on the operating condition of an engine in which the slot is used.
The flow extracted through the slot in use may be used or vented in any desired position. Purely by way of example, the extracted flow may be used in a heat exchanger. Thus, the slot may be connected (for example via a fluid conduit, such as a pipe) to a heat exchanger. The heat exchanger may be any type of heat exchanger, such as a matrix heat exchanger, for example. The heat exchanger may be a heat exchanger of a gas turbine engine. For example, the heat exchanger may be an oil cooler. The heat exchanger may be part of a geared turbofan, comprising a gearbox located between a turbine and the fan, and may be used to cool oil from the gearbox.
The skilled person will appreciate that except where mutually exclusive, a feature described in relation to any one of the above aspects may be applied to any other aspect. Furthermore except where mutually exclusive any feature described herein may be applied to any aspect and/or combined with any other feature described herein.
Embodiments will now be described by way of example only, with reference to the Figures, in which:
With reference to
The gas turbine engine 10 works in the conventional manner so that air entering the intake 12 is accelerated by the fan 13 to produce two air flows: a first air flow into the intermediate pressure compressor 14 and a second air flow which passes through a bypass duct 22 to provide propulsive thrust. The intermediate pressure compressor 14 compresses the air flow directed into it before delivering that air to the high pressure compressor 15 where further compression takes place.
The compressed air exhausted from the high-pressure compressor 15 is directed into the combustion equipment 16 where it is mixed with fuel and the mixture combusted. The resultant hot combustion products then expand through, and thereby drive the high, intermediate and low-pressure turbines 17, 18, 19 before being exhausted through the nozzle 20 to provide additional propulsive thrust. The high 17, intermediate 18 and low 19 pressure turbines drive respectively the high pressure compressor 15, intermediate pressure compressor 14 and fan 13, each by suitable interconnecting shaft.
Other gas turbine engines to which the present disclosure may be applied may have alternative configurations. By way of example such engines may have an alternative number of interconnecting shafts (e.g. two) and/or an alternative number of compressors and/or turbines. Further the engine may comprise a gearbox provided in the drive train from a turbine to a compressor and/or fan.
Aspects of the present disclosure relate to the control of secondary flow, such as (by way of example) boundary layer flow and the flow structures caused by boundary layer flow. Such secondary flows could occur at various positions through the gas turbine engine 10, for example in any of the stator or rotor stages of any of the fan 13, compressors 14, 15 or turbines 16, 17, 18, or indeed on/from any surface of the gas turbine engine. Accordingly, the present disclosure may be used at a number of different positions in the engine 10.
The gas turbine engine 10 comprises a stage of outlet guide vanes (OGVs) 100 extending across the bypass duct 22, which therefore sit in the bypass flow through the bypass duct 22. Each OGV 100 takes the form of a large stator vane, and thus may be referred to as an aerofoil or aerofoil component. A plurality of OGVs 100 is typically provided as an annular array in the bypass duct 22. Purely by way of example, an arrangement of the present disclosure is described below in relation to the outlet guide vanes 100.
The gas turbine engine 10 may comprise a flow passage 130 and/or other feature in accordance with the present disclosure, and thus may itself be in accordance with the present disclosure.
Each OGV 110, 120 has a suction surface 112, 122 and a pressure surface 114, 124. A pressure gradient exists in the flow passage 130 formed between the OGVs 110, 120, with the static pressure generally decreasing from the pressure surface 114 of one OGV 110 to the suction surface 122 of a neighbouring OGV 120.
In use, the mainstream flow, indicated schematically by arrow 200 in
However, the lower momentum boundary layer flow 300 close to the endwall 150, which extends substantially perpendicularly to the radial direction, is also subjected to substantially the same pressure gradient through the flow passage 130 as the mainstream flow 200. Because the boundary layer flow 300 has lower momentum that the mainstream flow 200, the pressure gradient causes greater turning than that experienced by the mainstream flow. This may be referred to as “over-turning”. This over-turning is clearly shown in schematic form in
As a result of the over-turning, the boundary layer flow 300 may produce other secondary flow structures, which may represent further flow losses, thereby decreasing the efficiency of the gas turbine engine 10. For example, in
The slot 400 is formed in the endwall 150. The endwall 150 may be, for example, the radially inner boundary of the flow passage 130 that extends between the first and second OGVs 110, 120. Of course, in other arrangements in accordance with the present disclosure, the endwall 150 may be other walls and/or flow boundaries, for example a radially outer flow boundary.
The slot 400 has a length l and a width w. The length l is greater than the width w. Purely by way of example, in any arrangement in accordance with the present disclosure, the aspect ratio of the length l to the width w may be greater than 2, for example greater than 3, for example greater than 5, for example greater than 10, for example greater than 100.
As shown in
By way of example,
The length direction l of the slot 400 may be more aligned with the direction of the camber 116, 126 of one or both of the aerofoils 110, 120 (which may have the same camber, as in the
The slot 400 may be described as being elongate. The slot 400 may be described as being elongated in the direction of the mainstream flow 200 and/or in the direction of the camber 116, 126 of the aerofoils 110, 120.
As shown in
The slot 400 is positioned generally centrally between the first and second aerofoils 110, 120. This may be particularly effective in capturing the overturned boundary layer flow 300. For example, the minimum distance between the slot 400 (for example an edge of the slot 400) and the camber line 116 of the first aerofoil 110 may be in the range of from 0.25 and 4 times the minimum distance between the slot 400 and the camber line 126 of the second aerofoil 120 at all points along the length of the slot.
By forming the slot 400 as described and/or claimed herein (for example aligning the length l and/or width w of the slot 400 as described and/or claimed herein), the effect of the presence of the slot 400 on the mainstream flow 200 may be reduced and/or substantially eliminated. Accordingly, the slot 400 may be said to enable removal of the unwanted, low momentum, boundary layer flow whilst substantially minimizing parasitic losses.
The flow 320 removed through the slot 400 may be used and/or ejected in any suitable location and/or for any suitable purpose. For example, where the slot 400 is provided to a gas turbine engine 10, the extracted flow 320 may be used to cool other components/other parts of the engine, for example either directly (for example through impingement and/or surface cooling) or via a heat exchanger (such as a matrix heat exchanger. By way of further example, the extracted flow 320 may be used as part of a tip clearance control (TCC) arrangement, for example either directly (through impingement of the extracted flow onto a casing, for example), or by using the extracted flow in an actuator used to control the supply of temperature-controlled flow to a casing. By way of further example, the extracted flow 320 may be used to control an actuator of any type, for example a pneumatic actuator, for example in a gas turbine engine 10.
For example, flow 320 is shown as being used to cool a power gearbox 510. Such a power gearbox 510 may be used in the power transmission path of a gas turbine engine 10, for example between a low pressure turbine 19 and the fan 13 so as to reduce the rotational speed of the fan 13 relative to the low pressure turbine 19 to which it is connected. In the
The
The
The exit pressure applied to the slot 400 may be at least in part determined by the downstream feature/position to which the extracted flow 320 is directed. The exit pressure (and thus the feature/position to which the extracted flow 320 is directed) may be chosen so as to provide the desired flow rate of the over-turned flow through the slot 400.
It will be understood that the disclosure is not limited to the embodiments above-described and various modifications and improvements can be made without departing from the concepts described herein. Purely by way of example, a flow passage 130 (for example the endwall(s) 150 of a flow passage 130 may be provided with one slot 400 (as illustrated in the
Number | Date | Country | Kind |
---|---|---|---|
1710076.9 | Jun 2017 | GB | national |
Number | Name | Date | Kind |
---|---|---|---|
3741285 | Kuethe | Jun 1973 | A |
4290781 | Wang | Sep 1981 | A |
4863121 | Savill | Sep 1989 | A |
5437421 | Nosenchuck | Aug 1995 | A |
20020134891 | Guillot | Sep 2002 | A1 |
20050106017 | Segota | May 2005 | A1 |
20050238483 | Guemmer | Oct 2005 | A1 |
20110097189 | Sandoval | Apr 2011 | A1 |
20150047352 | Glezer | Feb 2015 | A1 |
20170023437 | Diaz Parrilla | Jan 2017 | A1 |
20180238185 | Shapiro | Aug 2018 | A1 |
Number | Date | Country |
---|---|---|
1536146 | Jun 2005 | EP |
2267274 | Dec 2010 | EP |
2166494 | Aug 1973 | FR |
812273 | Apr 1959 | GB |
S5267404 | Jun 1977 | JP |
H10331604 | Dec 1998 | JP |
Entry |
---|
Great Britain Search Report dated Nov. 14, 2017, issued in GB Patent Application No. 1710076.9. |
Extended European Search Report dated Oct. 30, 2018 and issued in connection with European Patent Appln. No. 18176241.0. |
European Office Action dated Aug. 23, 2019 and issued in connection with European Patent Appln. No. 18176241.0. |
Number | Date | Country | |
---|---|---|---|
20180371919 A1 | Dec 2018 | US |