This application is related to application No. 13/888,967, which was filed with the U.S. Patent and Trademark Office on even date as the present application and is incorporated herein by reference.
The present invention is directed to a three stream turbofan engine, and specifically to exhausting third stream flow over a low pressure region.
Most aircraft engines finding use in military applications, such as air combat, reconnaissance and surveillance, are augmented turbofans. Augmentation provides additional thrust for the aircraft when called upon, that is, on-demand.
All turbofan engines include at least two air streams. All air utilized by the engine initially passes through a fan, and then it is split into the two air streams. The inner air stream is referred to as core air and passes into the compressor portion of the engine, where it is compressed. This air then is fed to the combustor portion of the engine where it is mixed with fuel and the fuel is combusted. The combustion gases then are expanded through the turbine portion of the engine, which extracts energy from the hot combustion gases, the extracted energy being used to run the compressor and the fan and to produce electrical power to operate accessories. The remaining hot gases then flow into the exhaust portion of the engine, producing the thrust that provides forward motion to the aircraft.
The outer air flow stream bypasses the engine core and is pressurized by the fan. No other work is done on the outer air flow stream which continues axially down the engine but outside the core. The bypass air flow stream also can be used to accomplish aircraft cooling by the introduction of heat exchangers in the fan stream. Downstream of the turbine, the outer air flow stream is used to cool the exhaust system. When additional thrust is required (demanded), some of the fan bypass air flow stream is redirected to the augmenter where it is mixed with core flow and fuel to provide the additional thrust to move the aircraft.
At the rear of the exhaust, a convergent-divergent (C-D) nozzle sets the correct back pressure so that the core runs optimally. The C-D nozzle accomplishes this by choking the gas flow through the nozzle throat, A8, and varying A8 as required to set the required mass flow.
Certain variable cycle aircraft engines achieve relatively constant airflow as thrust is varied by changing the amount of fan bypass flow utilizing a third duct. Aircraft utilizing these variable cycle engines are able to maintain inlet airflow at subsonic power settings more efficiently and over a broader flight envelope. One particular type of variable cycle engine is referred to as a FLADE™ engine, FLADE™ being an acronym for “blade-on-fan” and is characterized by an outer fan duct which flows air into a third air duct, the outer fan duct being generally co-annular with, and circumscribing the inner fan duct, which in turn, is co-annular and circumscribes the core. This third airstream is pressurized by a blade-on-fan arrangement as set forth in prior art FLADE™ disclosures. The FLADE™ blades are radially outward of and directly connected to rotating fan blades, the fan blades assembled to a disk mounted on a shaft. The position of the FLADE™ is a design consideration, the design selected based on the temperature and pressure of the FLADE™ air (third stream air) desired. The trade-off is based on the fact that a higher pressure of FLADE™ operating air produces FLADE™ operating air with a higher temperature. U.S. Pat. No. 5,404,713 issued to Johnson on Apr. 11, 1995, assigned to the Assignee of the present invention and incorporated herein by reference.
In these variable cycle designs, the inlet air can be split to form a third stream of air, which is in addition to the bypass and core. This third stream of air may be provided at a lower temperature and pressure than either the core air stream or the bypass air stream discussed above. The pressure of this third stream of air can be increased, while still maintaining it at a temperature and pressure below the bypass air stream, using the blade-on-fan or FLADE™ airfoil and duct. Prior art third stream air flows have been exhausted into the core exhaust either just fore or aft of the C-D nozzle. However, placement of heat exchangers within the third air stream in recent embodiments to take advantage of the low temperatures of the air flowing in the third stream duct or FLADE™ duct have resulted in pressure drops of the air in the third stream duct or FLADE™ duct. The changes in pressure by the introduction of heat exchangers have resulted in the inability to exhaust the third stream air into the core exhaust at conditions in which exhaust pressure is high, such as at high power operation, and the inlet pressure to the third stream is low, such as low Mach points. The result would be cessation of flow of air, or insufficient flow of air, in the third stream duct under these flight conditions, which could result in stagnation of air flow in the third stream duct and even backflow of gases (reversal of flow). Stagnation of the third stream flow air can lead to stall conditions on the blade-on-fan arrangement under certain circumstances, resulting in possible hardware damage and additional drag on the aircraft due to fan inlet spill drag.
What is needed is an arrangement in which the third stream duct air can be exhausted continuously so that there is no cessation or significant reduction of air flow in the third stream duct or in the FLADE™ duct at any operational conditions of the engine, as insufficient air flow could adversely affect cooling of heat exchangers or other hardware dependent on third stream air for cooling. Ideally, the third stream duct air flow should be exhausted to a low pressure region in a manner that will add thrust and operability to the aircraft.
An aircraft engine for a high performance military aircraft is provided. High performance military aircraft include but are not limited to fighters and reconnaissance aircraft. The high performance aircraft engine of the present invention includes a third stream duct producing a third air stream at reduced pressure. This third stream air is exhausted through a separate nozzle that is concentric with the main nozzle. The core stream and bypass are exhausted through the primary exhaust nozzle and the third stream air is exhausted separately through a secondary nozzle. The third stream air from the separate concentric nozzle is exhausted to a location at which the pressure is ambient or sub-ambient. The location at which the third stream air is exhausted should allow contribution to the thrust of the aircraft, so that high efficiency is maintained. The air stream from the third air duct or FLADE™ duct is exhausted through an exhaust nozzle aft of the third duct or FLADE™ duct, also referred to as a secondary nozzle. This third stream exhaust nozzle is positioned at the interface between the aft of the airframe and the leading edge of the engine outer flaps. Some engines that are housed in an engine bay have a bay ventilation slot, and the third stream exhaust nozzle is positioned adjacent to the bay ventilation slot between the engine nozzle and the airframe. In both variations, third stream air of FLADE™ duct air exhausts through the secondary nozzle over the outer flap(s).
By exhausting the third air stream through the secondary exhaust nozzle over the outer flaps, significant improvements in engine operation over a conventional turbofan engine can be realized. The third air duct or FLADE™ duct can provide increased cooling capacity without concerns for air stagnation or backflow due to the low pressure of the air, since this low pressure air, which is still above ambient, can be expelled. The heat exchangers can reliably be depended upon to provide extensive cooling to electrical systems.
The exhaust of third stream or FLADE™ air allows the core to run at higher temperatures since the reliable supply of cooler third stream cooling air allows for protection of the turbine. Heat exchangers in the third stream can be used to reduce the temperature of the turbine cooling air and allow the turbine hardware to survive in the increased temperature environment.
Finally, the third duct or FLADE™ duct now can be relied upon not only to exhaust the cooler, low pressure third stream air or FLADE™ duct air continuously, but also to intake the air at the inlet. The third duct or FLADE™ duct now accepts much of the inlet wall distortion and minimizes the inlet distortion on the fan, the core or bypass air. This allows the fan and core/compressor to operate with less stall margin. When the fan and core operate at less stall margins, the engine can operate at higher pressure ratios, which translates into greater thrust and efficiency. Also, the exhausting of air through the nozzle of the third stream duct or FLADE™ duct over the outer flaps additionally reduces boat tail drag while producing a more stable flow field over the outer flaps.
Other features and advantages of the present invention will be apparent from the following more detailed description of the preferred embodiment, taken in conjunction with the accompanying drawings which illustrate, by way of example, the principles of the invention.
In modern fighter aircraft, the engine may be installed in an engine bay of the aircraft, and a gap exists between the engine and the aircraft structure. Air flows through this gap and the air flowing though this gap exits or exhausts at the leading edge of the outer flaps where the air pressure is at ambient or sub-ambient conditions.
The differences between the turbofan of the present invention having the FLADE™ air stream and a conventional turbofan engine having two airstreams can be appreciated with reference to
In
Core air proceeds through engine 14 in the manner well known by those skilled in the art. Core air is fed from compressor portion 18 into combustor portion 24, where it is mixed with fuel and burned. The hot gases of combustion then flow to turbine portion 26 where they are expanded. An augmenter portion 28 resides aft of turbine portion 26 and is available to provide additional power as needed, on demand, although it is not normally operational during cruise mode of flight. Augmenter portion 28 is positioned at the front of exhaust portion 30 of engine 14, which receives the hot gases of combustion as they exit turbine 26. At the aft of exhaust portion 30 is a nozzle 32, which is a convergent-divergent (C-D) nozzle. Hot gases passing through nozzle 32 provide thrust to move the aircraft forward. The minimum nozzle diameter is designated in
Bypass air passing through bypass duct 22, as shown in
Core and fan air in augmented turbofan engine can be further spilt to form a third stream of air flowing through a third duct, which is sometimes referred to as a FLADE™ duct when the air is supplied to the third stream using a blade-on-fan arrangement. Alternately, the third stream may be bled from the fan at a fan stage fore or prior to the fan stage that provides bypass air, so that the third stream duct and its air supply are not referred to as a FLADE™ stream. Since the present invention is directed to exhausting air from the third duct, it is of no consequence whether the air in the third duct is sourced from a blade-on-fan arrangement or by diverting air flow from a fan stage fore of the source of bypass air. Any arrangement that utilizes a third duct 136 which bleeds air from the fan portion of the engine can be used in the present invention. The air that is bled to the third duct, or otherwise supplied to the third duct, must have a lower pressure and temperature than the air that is utilized as bypass air. This means that the third duct must be pressurized less than the bypass air. A convenient way of accomplishing this task is to bleed air or pressurize air from a fan stage that is forward of the fan stage used for bypass air, as this air will be at a lower temperature and pressure. As depicted in
Prior art third stream air flows have been exhausted into the core exhaust either just fore or aft of the C-D nozzle. However, placement of the heat exchangers 134 as shown in
In
Because of the low pressures that exist in third duct 136, discharge of air from third duct 136 must be accomplished at a location where pressure is lower than in duct 136, but at a location at which a contribution may be made to thrust. Ambient or subambient pressure exists at most, if not all, engine cycle conditions at the interface between the engine and the nozzle. In modern fighter aircraft, the engine may be installed in an engine bay of the aircraft, where a gap typically exists between the engine and the aircraft. For a military engine having a variable cycle engine, the discharge of third stream air over the leading edge of the outer flaps may be successfully accomplished. Because this location allows a significant component of the exhaust flow to be directed axially aft, and the pressure ratio through the nozzle is generally high enough to choke the nozzle, the nozzle can be designed with a high thrust coefficient and efficiently contribute to the total thrust of the engine.
In military aircraft with or without a bay ventilation slot in the location shown in
The third duct or FLADE™ duct 136 can exhaust to the step, taking advantage of the low pressure zone over outer flaps 152. Because the third stream flows more air with more energy than the bay slot, the third stream nozzle can reduce or eliminate the recirculation zone.
The arrangement can be analyzed using a simplified controlled volume formulation. The pressure on the outer flaps creates an axial force on the nozzle equal to Pflap−Pambient*Aflap×sin θ, where Pflap=pressure exerted on the outside surface of the flap, Pambient=pressure exerted on the inside surface of the flap, Aflap=the flap surface area, and θ is the angle between the outer flap and the axial coordinate. Increasing the outer flap pressure therefore results in an increased axial thrust force. This increase in axial thrust force can balance or even outweigh the loss in thrust recovery caused by an inability to mix the third stream air (FLADE™ air) with the core stream. The exhaust nozzle 156 of third stream duct (FLADE™ nozzle) may have a fixed throat area, vary in area dependently with the primary core nozzle throat area, or vary independently depending on cycle needs.
The arrangement shown in
The third stream nozzle 156 is located at the aft end of third stream duct 136. Nozzle 156 may be integral with duct 136, or may be a separate attachment affixed to duct 136. It may be comprised of the same material as third stream duct or may be comprised of a different material. Thus, the third stream nozzle may be comprised of a polymer matrix composite, a ceramic matrix composite or a metal, the selection being a design and repair/replacement consideration
Third stream duct 136 also may include a valve that varies the flow of third stream air exiting exhaust nozzle 156.
Valve 180 may be an active valve. In this circumstance, valve 180 may be in communication with a controller or with an engine Full Authority Digital Engine Control (FADEC™). When a separate controller is utilized, the controller may be in communication with pressure sensors sensing the pressure of the air in nozzle 180. The position of valve 180 may be controlled by a motor or actuator that moves the valve based on instructions from the controller to a preprogrammed position depending upon the sensed air pressure in the third nozzle. Alternatively, the motor or actuator may move the valve to a predetermined position based on instructions from an engine FADEC™ based on the engine condition dictated by the engine FADEC™ (i.e. augmentation, cruise, or some intermediate position).
Thus, the disclosure utilizes a third air stream for cooling and exhausts the third air stream by use of a third stream exhaust nozzle 156, which exhausts the low pressure third stream air to an available but even lower air pressure found over the outer flaps adjacent to the interface between the airframe and leading edge of the engine outer flaps. The exhaust of third stream air thus is independent of the mode at which the engine is operating. If desired, nozzle 156 of third stream duct 136 may be equipped with valve 180 that allows the flow of air from nozzle 156 to be varied.
While the invention has been described with reference to a preferred embodiment, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the invention. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from the essential scope thereof. Therefore, it is intended that the invention not be limited to the particular embodiment disclosed as the best mode contemplated for carrying out this invention, but that the invention will include all embodiments falling within the scope of the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
2940252 | Reinhart | Jun 1960 | A |
3210934 | Smale | Oct 1965 | A |
3296800 | Keenan et al. | Jan 1967 | A |
3449914 | Brown | Jun 1969 | A |
3792584 | Klees | Feb 1974 | A |
3841091 | Sargisson et al. | Oct 1974 | A |
3854286 | Klees | Dec 1974 | A |
3879941 | Sargisson | Apr 1975 | A |
3886737 | Grieb | Jun 1975 | A |
3910375 | Hache et al. | Oct 1975 | A |
3915413 | Sargisson | Oct 1975 | A |
3970252 | Smale et al. | Jul 1976 | A |
3979065 | Madden | Sep 1976 | A |
3981143 | Ross et al. | Sep 1976 | A |
3990638 | Johnson | Nov 1976 | A |
4004416 | Amelio et al. | Jan 1977 | A |
4010608 | Simmons | Mar 1977 | A |
4026472 | Rabone | May 1977 | A |
4043121 | Thomas et al. | Aug 1977 | A |
4050242 | Dusa | Sep 1977 | A |
4064692 | Johnson | Dec 1977 | A |
4066214 | Johnson | Jan 1978 | A |
4069661 | Rundell et al. | Jan 1978 | A |
4081137 | Sutton | Mar 1978 | A |
4086761 | Schaut et al. | May 1978 | A |
4095417 | Banthin | Jun 1978 | A |
4136518 | Hurley et al. | Jan 1979 | A |
4214441 | Mouritsen et al. | Jul 1980 | A |
4290262 | Wynosky et al. | Sep 1981 | A |
4544098 | Warburton | Oct 1985 | A |
4791783 | Neitzel | Dec 1988 | A |
4993663 | Lahti et al. | Feb 1991 | A |
5054288 | Salemann | Oct 1991 | A |
5058617 | Stockman et al. | Oct 1991 | A |
5074118 | Kepler | Dec 1991 | A |
5261227 | Giffin, III | Nov 1993 | A |
5402963 | Carey et al. | Apr 1995 | A |
5404713 | Johnson | Apr 1995 | A |
5720434 | Vdoviak | Feb 1998 | A |
6502383 | Janardan | Jan 2003 | B1 |
7614210 | Powell et al. | Nov 2009 | B2 |
20050047942 | Grffin et al. | Mar 2005 | A1 |
20050126174 | Lair | Jun 2005 | A1 |
20050188676 | Lair | Sep 2005 | A1 |
20050204742 | Lair | Sep 2005 | A1 |
20070000232 | Powell | Jan 2007 | A1 |
20070186535 | Powell | Aug 2007 | A1 |
20080141655 | Johnson et al. | Jun 2008 | A1 |
20080141676 | Johnson | Jun 2008 | A1 |
20100107600 | Hillel | May 2010 | A1 |
20120167549 | Lariviere et al. | Jul 2012 | A1 |
20120321448 | Pesyna | Dec 2012 | A1 |
Number | Date | Country |
---|---|---|
1895142 | Mar 2008 | EP |
1939437 | Jul 2008 | EP |
Entry |
---|
PCT Search Report and Written Opinion issued in connection with corresponding Application No. PCT/US2014/035499 dated Feb. 10, 2015 |
International Search Report and Written Opinion issued in connection with corresponding PCT Application No. PCT/US2014/035497 dated Feb. 11, 2015. |
U.S. Non-Final Office Action issued in connection with related U.S. Appl. No. 13/888,967 dated Sep. 1, 2015. |
Unofficial English translation of Office Action and Search Report issued in connection with corresponding Application No. 201480026254.9 dated Aug. 30, 2016. |
David Lynn Dawson et al., filed May 7, 2013, U.S. Appl. No. 13/888,967. |
Number | Date | Country | |
---|---|---|---|
20140345254 A1 | Nov 2014 | US |