The present invention relates to gas regulators, and more particularly, to gas regulators having regulator valves with primary and secondary seats for closing the flow of fluid through the regulator.
The pressure at which typical gas distribution systems supply gas may vary according to the demands placed on the system, the climate, the source of supply, and/or other factors. However, most end-user facilities equipped with gas appliances such as furnaces, ovens, etc., require the gas to be delivered in accordance with a predetermined pressure, and at or below a maximum capacity of a gas regulator that may be installed in the system. Such gas regulators are implemented into these distribution systems to ensure that the delivered gas meets the requirements of the end-user facilities. Conventional gas regulators generally include a closed-loop control actuator for sensing and controlling the pressure of the delivered gas.
In addition to a closed loop control, some conventional gas regulators include a relief valve. The relief valve is adapted to provide over pressure protection when the regulator or some other component of the fluid distribution system fails, for example. Accordingly, in the event the delivery pressure rises above a predetermined threshold pressure, the relief valve opens to exhaust at least a portion of the gas to the atmosphere, thereby reducing the pressure in the system.
The actuator 12 is coupled to the regulator valve 14 to ensure that the pressure at the outlet 18 of the regulator valve 14, i.e., the outlet pressure, is in accordance with a desired outlet or control pressure. The actuator 12 is therefore in fluid communication with the regulator valve 14 via a valve mouth 34 and an actuator mouth 20. The actuator 12 includes a control assembly 22 for sensing and regulating the outlet pressure of the regulator valve 14. Specifically, the control assembly 22 includes a diaphragm 24, a piston 32, and a control arm 26 having a valve disc 28. The conventional valve disc 28 includes a generally cylindrical body 25 and a sealing insert 29 fixed to the body 25. The diaphragm 24 senses the outlet pressure of the regulator valve 14. The control assembly 22 further includes a control spring 30 in engagement with a top-side of the diaphragm 24 to offset the sensed outlet pressure. Accordingly, the desired outlet pressure, which may also be referred to as the control pressure, is set by the selection of the control spring 30.
The diaphragm 24 is operably coupled to the control arm 26, and therefore the valve disc 28, via the piston 32, controls the opening of the regulator valve 14 based on the sensed outlet pressure. For example, when an end user operates an appliance, such as a furnace that places a demand on the gas distribution system downstream of the regulator 10, the outlet flow increases, thereby decreasing the outlet pressure. Accordingly, the diaphragm 24 senses this decreased outlet pressure. This allows the control spring 30 to expand and move the piston 32 and the right-side of the control arm 26 downward, relative to the orientation of
The housing 60 includes a hollow, generally cylindrical housing having a hexagonal nut portion 66, a body portion 68, and a curtain portion 70. The body portion 68 includes an internal bore 74 defining a step 76 and a ring-shaped recess 78. The ring-shaped recess 78 contains an o-ring 83 for providing a pneumatic seal between the housing 60 and the cartridge 62. The body portion 68 further includes a plurality of external threads 72 for being threadably coupled into the regulator valve 14, as depicted. The nut portion 66 of the housing 62 is therefore adapted to be engaged by a tool such as a pneumatic ratchet to install the valve port 36 into the throat 11 of the regulator valve 14. The curtain portion 70 includes a plate 80 spaced from the body portion 68 of the housing 62 by a pair of legs 82. The plate 80 carries a secondary seat 71 including a rubber surface 73, for example. So configured, the curtain portion 70 defines a pair of windows 84 in the housing 60. The windows 84 allow for the flow of gas into the valve port 36 and through the regulator valve 14.
The cartridge 62 of the conventional valve port 36 depicted in
Moreover, the first portion 62a of the cartridge 62 includes an outlet end 90 defining an externally chamfered surface 92 and a primary seat 94. The primary seat 94 is adapted to be sealingly engaged by the valve disc 28, as depicted, to stop the flow of gas through the regulator valve 14. The second portion 62b includes an inlet end 96 defining an internally chamfered surface 98 and a seating surface 95. The seating surface 95 is adapted to engage the rubber surface 73 of the secondary seat 71 upon the primary seat 94 failing to provide an adequate seal to close the valve port 36.
For example, during use, debris or some other type of foreign material may become lodged between the valve disc 28 and the primary seat 94 when the valve disc 28 attempts to seal against the primary seal 94. Thus, the primary seal fails to stop the flow of gas through the valve port 36 and the pressure downstream of the regulator 10, i.e., the outlet pressure, increases. This increase is sensed by the diaphragm 24 which further causes the valve disc 28 to be forced toward the valve port 36. This force eventually overcomes the force of the spring 64 in the valve port 36 and displaces the cartridge 62 relative to the housing 60 in a direction opposite the arrow A. Continued displacement causes the seating surface 95 on the second portion 62b of the cartridge 62 to engage the rubber surface 73 of the secondary seat 71 carried by the plate 80 of the curtain portion 70. So configured, the secondary seat 71 of the cartridge 62 seals the inlet end 96 and blocks the flow of gas from passing through the windows 84 in the housing 60, thereby preventing gas from flowing through the regulator valve 14. Moreover, the o-ring 83 seals any path for gas to penetrate the windows 84 and leak between the cartridge 62 and the housing 60 of the valve port 36. Once a downstream demand is placed back on the system however, the diaphragm 24 senses a decrease in outlet pressure and moves the valve disc 28 away from the valve port 36. The spring 64 biases the cartridge 62 back to the position depicted in
Additionally, as mentioned above, the conventional regulator 10 depicted in
One consideration in selecting a regulator for use in a particular application includes maximizing flow capacity at the set outlet, or control, pressure. However, due to structural constraints, the conventional valve port 36 is limited as to how large of a diameter the orifice 88 may have. For example, one conventional embodiment of the valve port 36 may include an orifice 88 with a maximum diameter of seven-eighths of an inch, i.e., ⅞″.
For example, the dimensions of the housing 60 of the valve port 36 are oftentimes prescribed by the amount of torque used to install the valve port 36 into the regulator valve 14. Specifically, as mentioned above, the valve port 36 may be installed with a pneumatic ratchet. If the sidewall of the body portion 68 of the housing 60 adjacent to the threads 72 is too thin, then the torque generated by the pneumatic ratchet may shear the housing 60. Accordingly, the thickness of the housing 60, which impacts the diameter of the orifice 88 in the cartridge 62, and therefore the maximum flow capacity, is limited based on the prescribed thickness of the sidewall of the housing 60. Additionally, as described above, the conventional port 36 requires the recess 78 in the housing 60 for accommodating the o-ring 83, which prevents leakage when utilizing the secondary seal. The position and geometry of the recess 78 may further compromise the structural integrity of the sidewall of the housing 60, and therefore, must be considered in designing the thickness of the housing 60.
Moreover, to maximize flow capacity of the valve port 36, the windows 84 must be positioned substantially within the flow of gas from the inlet 16. Thus, housing 60 of the valve port 36 is dimensioned such that the curtain portion 70 and the plate 80 carrying the secondary seat 71 extend well beyond the throat 11 of the regulator valve 14. So configured, the cartridge 62 must be suitably dimensioned to slide from the position depicted in
The present invention provides a fluid regulating device and/or a valve port for a fluid regulating device. The fluid regulating device generally comprises an actuator and a valve body. The actuator includes a moveable valve disc. The valve port is disposed within the valve body. The actuator displaces the valve disc relative to the valve port for controlling the flow of fluid through the valve body. The valve port includes a cartridge slidably disposed within a housing. The cartridge includes a primary seat for engagement with the valve disc to provide a primary seal to stop flow through the valve body when there is no demand on the system. Moreover, the housing includes a nose portion such that in the event there is an obstruction between the valve disc and the primary seat, the cartridge slides into the housing and the valve disc sealingly engages the nose portion on the housing to provide a back-up seal or secondary seal.
With continued reference to
The actuator 102 includes a housing 116 and the control assembly 122, as mentioned above. The housing 116 includes an upper housing component 116a and a lower housing component 116b secured together with a plurality of fasteners, for example. The lower housing component 116b defines a control cavity 118 and an actuator mouth 120. The actuator mouth 120 is connected to the valve mouth 112 of the regulator valve 104 to provide fluid communication between the actuator 102 and the regulator valve 104. In the disclosed embodiment, the regulator 100 includes a collar 111 securing the mouths 112, 120 together. The upper housing component 116a defines a relief cavity 134 and an exhaust port 156. The upper housing component 116a further defines a tower portion 158 for accommodating a portion of the control assembly 122, as will be described.
The control assembly 122 includes a diaphragm subassembly 121, a disc subassembly 123, and a release valve 142. The diaphragm subassembly 121 includes a diaphragm 124, a piston 132, a control spring 130, a relief spring 140, a combination spring seat 164, a relief spring seat 166, a control spring seat 160, and a piston guide 159.
More particularly, the diaphragm 124 includes a disc-shaped diaphragm defining an opening 144 through a central portion thereof. The diaphragm 124 is constructed of a flexible, substantially air-tight, material and its periphery is sealingly secured between the upper and lower housing components 116a, 116b of the housing 116. The diaphragm 124 therefore separates the relief cavity 134 from the control cavity 118.
The combination spring seat 164 is disposed on top of the diaphragm 124 and defines an opening 170 positioned concentric with the opening 144 in the diaphragm 124. As depicted in
The piston 132 of the disclosed embodiment includes a generally elongated rod-shaped member having a sealing cup portion 138, a yoke 172, a threaded portion 174, and a guide portion 175. The sealing cup portion 138 is concaved and generally disc-shaped and extends circumferentially about a mid-portion of the piston 132, and is located just below the diaphragm 124. The yoke 172 includes a cavity adapted to accommodate a coupler 135 which connects to a portion of the disc subassembly 123 to enable attachment between the diaphragm subassembly 121 and the disc subassembly 123, as will be described.
The guide portion 175 and the threaded portion 174 of the piston 132 are disposed through the openings 144, 170 in the diaphragm 124 and the combination spring seat 164, respectively. The guide portion 175 of the piston 132 is slidably disposed in a cavity in the piston guide 159, which maintains the axial alignment of the piston 132 relative to the remainder of the control assembly 122. The relief spring 140, the relief spring seat 166, and a nut 176, are disposed on the threaded portion 174 of the piston 132. The nut 176 retains the relief spring 140 between the combination spring seat 164 and the relief spring seat 166. The control spring 130 is disposed on top of the combination spring seat 164, as mentioned, and within the tower portion 158 of the upper housing component 116a. The control spring seat 160 is threaded into the tower portion 158 and compresses the control spring 130 against the combination spring seat 164. In the disclosed embodiment, the control spring 130 and the relief spring 140 include compression coil springs. Accordingly, the control spring 130 is grounded against the upper housing component 116a and applies a downward force to the combination spring seat 164 and the diaphragm 124. The relief spring 140 is grounded against the combination spring seat 164 and applies an upward force to the relief spring seat 166, which in turn is applied to the piston 132. In the disclosed embodiment, the force generated by the control spring 130 is adjustable by adjusting the position of the control spring seat 160 in the tower portion 158, and therefore the control pressure of the regulator 100 is also adjustable.
The control spring 130 acts against the pressure in the control cavity 118, which is sensed by the diaphragm 124. As stated, this pressure is the same pressure as that which exists at the outlet 108 of the regulator valve 104. Accordingly, the force applied by the control spring 130 sets the outlet pressure to a desired, or control pressure for the regulator 100. The diaphragm subassembly 121 is operably coupled to the disc subassembly 123, as mentioned above, via the yoke portion 172 of the piston 132 and the coupler 135.
Specifically, the disc subassembly 123 includes a control aim 126 and a stem guide 162. The control arm 126 includes a stem 178, a lever 180, and the control element 127. The control element 127 of the disclosed embodiment includes a valve disc 128 with a seating surface 188. The valve disc 128 may be similar to the valve disc 28 described above with reference to
The stem guide 162 includes a generally cylindrical outer portion 162a, a generally cylindrical inner portion 162b, and a plurality of radial webs 162c connecting the inner and outer portions 162b, 162a. The outer portion 162a of the stem guide 162 is sized and configured to fit within the mouths 112, 120 of the regulator valve 104 and lower housing component 116b, respectively. The inner portion 162b is sized and configured to slidably retain the stem portion 178 of the control arm 126. Thus, the stem guide 162 serves to maintain the alignment of the regulator valve 104, the actuator housing 116, and the control assembly 122, and more particularly, the stem 178 of the control arm 126 of the control assembly 122.
However, in the event that an operating demand is placed on the gas distribution system, e.g., a user begins operating an appliance such as a furnace, a stove, etc., the appliance draws gas flow from the control cavity 118 of the regulator 100, thereby reducing the pressure that is sensed by the diaphragm 124. As the pressure sensed by the diaphragm 124 decreases, a force imbalance occurs between a control spring force and an outlet pressure force on the diaphragm 124 such that the control spring 130 expands and displaces the diaphragm 124 and piston 132 downward, relative to the housing 116. This causes the lever 180 to pivot in the clockwise direction about the pivot pin 186, which, in turn, rotates the knuckle 187 relative to the recess 178b in the stem 178. This moves the valve disc 128 away from the outlet end 152 of the valve port 136 to open the regulator valve 104. So configured, the gas distribution system is able to deliver gas to the downstream appliance through the regulator valve 104 at a control pressure that is set by the control spring 130. Additionally, the diaphragm subassembly 121 continues to sense the outlet pressure of the regulator valve 104. As long as the outlet pressure remains approximately equal to the control pressure, the control assembly 122 will balance the valve disc 128 in an open position away from the outlet end 152 of the valve port 136.
For example, if the outlet flow, i.e., the demand, increases, thereby decreasing the outlet pressure below the control pressure, the diaphragm senses the decreased outlet pressure and the spring 130 expands and moves the diaphragm 124 and piston 132 downward to further move the control element 127 away from the valve port 136 and further open the regulator valve 104. Alternatively, however, if the outlet flow, i.e., the demand, decreases, thereby increasing the outlet pressure above the control pressure set by the control spring 130, the diaphragm 124 senses the increased outlet pressure and moves upward against the bias of the control spring 130. Furthermore, in the event that the downstream demand completely stops, gas will continue to flow through the regulator valve 104 such that the downstream pressure sufficiently increases to move the valve disc 128 into engagement with the outlet end 152 of the valve port 136.
The housing 260 includes a generally cylindrical housing having a nose 265, a hexagonal nut portion 266, a body portion 268, and a curtain portion 270. The nose 265, the nut portion 266, and the body portion 268 cooperatively, or in combination, define an internal cavity 274. The internal cavity 274 includes a first portion 274a and a second portion 274b. The diameter of the first portion 274a is smaller than the diameter of the second portion 274b. Thus, the body portion 268 includes a step surface 276 disposed between the first and second portions 274a, 274b.
The first portion 274a extends longitudinally from the nose 265 of the housing 260, through the nut portion 266, and terminates at the second portion 274b of the internal cavity 274. The second portion 274b extends longitudinally from the termination of the first portion 274a to the curtain portion 270 of the housing 260. The curtain portion 270 includes a plate 280 spaced from the body portion 268 of the housing 262 by a pair of legs 282. The plate 280 of the disclosed embodiment includes a solid circular plate that serves as a spring seat 271. So configured, the curtain portion 270 defines a pair of windows 284 in the housing 260 for allowing gas to flow into the valve port 136.
Additionally, the body portion 268 further includes a plurality of external threads 272 for being threadably coupled into the throat 110 of the regulator valve 104, as depicted. The nut portion 266 of the housing 262 is therefore adapted to be engaged by a tool such as a pneumatic ratchet to install the valve port 136 into the regulator valve 104.
The cartridge 262 of the valve port 136 disclosed in
The flange portion 262b is a solid disc-shaped member extending circumferentially about the conduit portion 262a. The flange portion 262b includes a stop surface 285 and a spring seat surface 287, which is opposite the stop surface 285. The spring 264, which may include a compression coil spring, is retained between the spring seat surface 287 of the flange portion 262b of the cartridge 262 and the spring seat 271 of the curtain portion 270 of the housing 260. Thus, the spring 264 biases the cartridge 262 into the first position depicted in
As mentioned above, the housing 160 of the present embodiment of the valve port 136 includes a nose 265. The nose 265 generally includes a raised portion extending from the nut portion 266 of the housing 260 adjacent to the first portion 274a of the internal cavity 274 and the outlet end 152 of the cartridge 262. The nose 265 includes a first frustoconical 265a portion and a second frustoconical portion 265b disposed inside and concentric with the first frustoconical portion 265a. The first frustoconical portion 265a converges away from the nut portion 266 of the housing 260 at a first angle α. The second frustoconical portion 265b converges away from the nut portion 266 of the housing 260 at a second angle β. In the disclosed embodiment, the first angle α is greater than the second angle β. However, in an alternative embodiment, the first angle α may be equal to or even less than the second angle β. In any respect, the second frustoconical portion 265b, by virtue of extending further away from the nut portion 266 than the first frustoconical portion 265a, defines a secondary seat 267, which is adapted to be engaged by the valve disc 128 under certain failure conditions.
For example, during operation, debris or some other type of foreign material, which may be identified by reference numeral 101 in
Thus, the regulator 100 and the valve port 136 of the embodiment depicted in
Furthermore, the secondary seat 267 of the housing 260 of the valve port 136 eliminates any potential for a leakage path between the cartridge 262 and the housing 260 when the valve disc 128 engages the secondary seat 267. In contrast, when the cartridge 62 of the conventional valve port 36 depicted in
Although, the valve port 136 of the present invention has been described as maybe including the o-ring 283, the valve port 136 neither requires such an o-ring nor a recess that compromises the strength of the housing 260. For example, the o-ring 283 is not positioned about an outer radial sidewall of the cartridge 262, but rather, it is positioned between the stop surface 285 of the flange portion 262b and the step surface 276 of the housing 260. So positioned, the o-ring 283 does not affect the thickness of the sidewall of the housing 260 in the manner that the recess 78 and o-ring 83 of the conventional valve port 36 affect the thickness of the conventional housing 60.
Furthermore, the o-ring 283 only provides a pneumatic seal between the cartridge 262 and the housing 260 when the cartridge 262 is in the normal operating position depicted in
Therefore, because the valve port 136 of the present embodiment of the present invention does not require a pneumatic seal similar to the o-ring 83 of the conventional valve port 36, the valve port 136 provides for a greater range of flow capacities, and more particularly, a greater maximum flow capacity. For example,
Specifically, the valve port 236 depicted in
The housing 360 includes a generally cylindrical housing having a nose 365, a hexagonal nut portion 366, a body portion 368, and a curtain portion 370. The nose 365, the nut portion 366, and the body portion 368 cooperatively, or in combination, define an internal cavity 374. The internal cavity 374 includes a first portion 374a and a second portion 374b. The diameter of the first portion 374a is only slightly smaller than the diameter of the second portion 374b in the embodiment of the valve port 236 depicted in
The first portion 374a extends longitudinally from the nose 365 of the housing 360, through the nut portion 366, and terminates at the second portion 374b of the internal cavity 374. The second portion 374b extends longitudinally from the termination of the first portion 374a to the curtain portion 370 of the housing 360. The curtain portion 370 includes a plate 380 spaced from the body portion 368 of the housing 362 by a pair of legs 382. The plate 380 of the disclosed embodiment includes a solid circular plate that serves as a spring seat 371. So configured, the curtain portion 370 defines a pair of windows 384 in the housing 360 for allowing gas to flow into the valve port 236.
Additionally, the body portion 368 further includes a plurality of external threads 372 for being threadably coupled into the throat 110 of the regulator valve 104, as depicted in
The cartridge 362 of the valve port 236 disclosed in
The flange portion 362b is a solid disc-shaped member extending circumferentially about the flow portion 362a. The flange portion 362b includes a stop surface 385 and a spring seat surface 387, which is opposite the stop surface 385. The spring 364, which may include a compression coil spring, is retained between the spring seat surface 387 of the flange portion 362b of the cartridge 362 and the spring seat 371 of the curtain portion 370 of the housing 360. Thus, the spring 364 biases the cartridge 362 into the position depicted in
As mentioned above, the housing 360 of the present embodiment of the valve port 236 includes a nose 365. The nose 365 generally includes a raised portion extending from the nut portion 366 of the housing 360 adjacent to the first portion 374a of the internal cavity 374 and the outlet end 152 of the valve port 236. The nose 365 includes a first frustoconical 365a portion and a second frustoconical portion 365b disposed inside and concentric with the first frustoconical portion 365a. The first frustoconical portion 365a converges away from the nut portion 366 of the housing 360 at a first angle α. The second frustoconical portion 365b converges away from the nut portion 366 of the housing 360 at a second angle β. In the disclosed embodiment, the first angle α is greater than the second angle β. However, in an alternative embodiment, the first angle α may be equal to or even less than the second angle β. In any respect, the second frustoconical portion 365b, by virtue of extending further away from the nut portion 366 than the first frustoconical portion 365a, defines a secondary seat 367, which is adapted to be engaged by the valve disc 128 under certain failure conditions, such as debris becoming lodged between the valve disc 128 and the primary seat 394, similar to that described above with reference to the previous embodiment of the valve port 136 depicted in
Accordingly, the diameter of the orifice 388 of the present embodiment of the valve port 236 is larger than the diameter of the orifice 288 of the valve port 136 described above with reference to
The increased diameter of the orifice 388 of the valve port 236 depicted in
In one embodiment, the orifice 388 of the embodiment of the valve port 236 depicted in
Thus, the present invention advantageously provides for a versatile valve port having increased flow capacity and increased structural integrity while performing a secondary sealing function. While the various embodiments of the valve port 136, 236 constructed in accordance with the present invention have thus far been described as including a housing 260, 360 with a nose 265, 365 comprising first and second frustoconical portions 265a, 265b, 365a, 365b, as well as a cartridge 262, 362 having an outlet end 152 with a single externally chamfered surface 292, 392 adjacent a primary seat 294, 394, alternative embodiments may include different geometrical configurations.
For example,
The housing 460 includes a nose 465, a nut portion 466, and a body portion 468. The housing 460 may also include a curtain portion similar to the curtain portions 270, 370 described above with reference to
The housing 560 includes a nose 565, a nut portion 566, and a body portion 568. The housing 560 may also include a curtain portion similar to the curtain portions 270, 370 described above with reference to
Therefore, regardless of the specific geometry of the various components of the valve ports 136, 236, 436, and 536 depicted in
Moreover, the regulator 100 described herein is merely one example of a fluid control device incorporating the principles of the present invention. Other fluid control devices such as control valves may also benefit from the structures and/or advantages of the present invention.
The priority benefit of U.S. Provisional Patent Application No. 60/913,121, entitled “Secondary Seat for Gas Regulator,” filed Apr. 20, 2007, is claimed and the entire contents thereof are expressly incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
836258 | Hubner et al. | Nov 1906 | A |
1166027 | Weisgerber et al. | Dec 1915 | A |
1262225 | Meyer | Apr 1918 | A |
1918602 | Joyce | Jul 1933 | A |
1973744 | Brown | Sep 1934 | A |
2173707 | Brown | Sep 1939 | A |
2192327 | Palmer | Mar 1940 | A |
2215419 | Cheeseman | Sep 1940 | A |
2263581 | Hughes | Nov 1941 | A |
2315370 | Hughes | Mar 1943 | A |
2522732 | Fairchild | Sep 1950 | A |
2619983 | Roberts | Dec 1952 | A |
2688980 | Pool | Sep 1954 | A |
2826213 | Wright | Mar 1958 | A |
2827069 | Peterson | Mar 1958 | A |
2869575 | Hutchens | Jan 1959 | A |
2895501 | Irwin | Jul 1959 | A |
2951494 | Holmes | Sep 1960 | A |
3001545 | Ziege | Sep 1961 | A |
3160169 | Peterson | Dec 1964 | A |
3228417 | Schwerter | Jan 1966 | A |
3386465 | Johnson | Jun 1968 | A |
3392749 | Gneiding e al. | Jul 1968 | A |
3420257 | Lansky et al. | Jan 1969 | A |
3425442 | Cameron et al. | Feb 1969 | A |
3488685 | Hughes | Jan 1970 | A |
3525356 | Cameron et al. | Aug 1970 | A |
3572372 | Moore | Mar 1971 | A |
3580271 | Farrer | May 1971 | A |
3599658 | Kruzan et al. | Aug 1971 | A |
3613725 | Hughes | Oct 1971 | A |
3621867 | Johnson | Nov 1971 | A |
3623506 | Bonner et al. | Nov 1971 | A |
3658082 | DiTirro | Apr 1972 | A |
3705599 | Sheward | Dec 1972 | A |
3722536 | Hill et al. | Mar 1973 | A |
3754570 | Hughes et al. | Aug 1973 | A |
3809108 | Hughes | May 1974 | A |
RE28447 | Bonner et al. | Jun 1975 | E |
3892255 | Johnson | Jul 1975 | A |
3971410 | St. Clair | Jul 1976 | A |
4019531 | Johnson | Apr 1977 | A |
4067354 | St. Clair | Jan 1978 | A |
4067355 | St. Clair | Jan 1978 | A |
4069839 | Hughes | Jan 1978 | A |
4129145 | Wynn | Dec 1978 | A |
4176677 | Hughes | Dec 1979 | A |
4195656 | Kanerva et al. | Apr 1980 | A |
4485843 | Wolff | Dec 1984 | A |
4505292 | Osterode | Mar 1985 | A |
4679592 | Lamb | Jul 1987 | A |
4754778 | Duffy et al. | Jul 1988 | A |
4842013 | Rice et al. | Jun 1989 | A |
4889158 | Rice et al. | Dec 1989 | A |
4972868 | Davis et al. | Nov 1990 | A |
4972871 | Rice et al. | Nov 1990 | A |
5007614 | Lockwood, Jr. | Apr 1991 | A |
5176148 | Wiest et al. | Jan 1993 | A |
5697398 | Gidney et al. | Dec 1997 | A |
5881765 | Turney et al. | Mar 1999 | A |
5887853 | Holmes et al. | Mar 1999 | A |
6167905 | Malloy et al. | Jan 2001 | B1 |
6321166 | Evans et al. | Nov 2001 | B1 |
6422260 | Danowski et al. | Jul 2002 | B2 |
7537194 | Nagai | May 2009 | B2 |
20040187930 | Hawkins et al. | Sep 2004 | A1 |
20050106952 | Maxwell et al. | May 2005 | A1 |
20060065307 | Schmidt et al. | Mar 2006 | A1 |
20080031755 | Pekar | Feb 2008 | A1 |
20080257427 | Zhang et al. | Oct 2008 | A1 |
Number | Date | Country |
---|---|---|
37 14 065 | Oct 1987 | DE |
295 06 395.6 | Jun 1995 | DE |
0 277 869 | Aug 1988 | EP |
0 966 346 | Aug 1964 | GB |
1 220 467 | Jan 1971 | GB |
2 024 996 | Jan 1980 | GB |
55-094064 | Jul 1980 | JP |
06-004140 | Jan 1994 | JP |
WO-02093284 | Nov 2002 | WO |
Entry |
---|
Office Action for Chinese Patent Application No. 200880012623.3, dated Dec. 21, 2010. |
Office Action for Chinese Patent Application No. 200880011137.X, dated Dec. 27, 2010. |
International Search Report for PCT/US2008/060857, mailed Aug. 1, 2008. |
Written Opinion of the International Searching Authority for PCT/US2008/060857, mailed Aug. 1, 2008. |
European Examination Report for Application No. 08746296.6, dated May 26, 2011. |
First Chinese Office Action for Application No. 200880009704.8, dated May 31, 2011. |
First Chinese Office Action for Application No. 200880011778.5, dated Jun. 21, 2011. |
Office Action for Gulf Corporation Council Application No. GCC/P/2008/10630, dated Jul. 2, 2011. |
Actaris Metering Systems, “B38 Series Commerical & Industrial Regulator, Advanced Metering and Regulation Technology at Work,” pp. 1-28 (2002). |
Actaris Metering Systems, “CL34 Series Commerical Regulator, Advanced Metering and Regulation Technolos at Work,” pp. 1-12 (2001). |
Actaris Metering Systems, “Gas Regulation Overview,” pp. 1-16 (2004). |
Actaris Metering Systems “Regulator Loading Ring Instructions,” pp. 1-2 (1996). |
Australian Office Action Application No. 2008242690, dated Mar. 10, 2011. |
Australian Office Action for Application No. 2008242692, dated Feb. 22, 2011. |
Australian Office Action for Application No. 2008242775, dated Nov. 16, 2010. |
Australian Office Action or Application No. 2008242777, dated Nov. 29, 2010. |
Emerson Process Management, “Y600A Series Pressure Reducing Regulators,” Instruction Manual Form 5458, pp. 1-8 (2008). |
European Examination Report for Application No. 08746301.4, Jan. 20, 2011. |
European Office Action or Application No. 08746287.5-2206, dated Mar. 15, 2010. |
European Office Action for Application No. 08746291.7, dated Mar. 15, 2010. |
European Office Action for Application No. 08746310.5, dated Mar. 16, 2010. |
First Chinese Office Action for Application No. 200880011104.5, dated Apr. 20, 2011. |
First Office Action for Chinese Application No. 200880011630.1, dated Feb. 24, 2011. |
First Office Action for Chinese Application No. 200880012891.5, dated Apr. 15, 2011. |
Fisher-Rosemount, “Type Y600A Series Pressure Reducing Regulators. More Versatile Than Ever Before,” pp. 1-2 (1998). |
International Preliminary Report on Patentability for Application No. PCT/US2008/060842, dated Oct. 20, 2009. |
International Preliminary Report on Patentability for Application No. PCT/US2008/060846, dated Oct. 20, 2009. |
International Preliminary Report on Patentability for Application No. PCT/US2008/060857, dated Oct. 20, 2009. |
International Preliminary Report on Patentability for Application No. PCT/US2008/060860, dated Oct. 20, 2009. |
International Preliminary Report on Patentability for Application No. PCT/US2008/060872, dated Oct. 20, 2009. |
International Search Report for Application No. PCT/US2008/060862, dated Aug. 5, 2008. |
International Search Report for Application No. PCT/US2008/060842, dated Jul. 29, 2008. |
International Search Report for Application No. PCT/US2008/060846, dated Aug. 6, 2008. |
International Search Report for Application No. PCT/US2008/060860, dated Aug. 5, 2008. |
International Search Report Application No. PCT/US2008/060872, dated Aug. 5, 2008. |
Schlumberger Gas, “CL-38 Series Constan Loaded Regulators,” Data Sheet, (1997). |
Written Opinion for Application No. PCT/US2008/060842, dated Jul. 29, 2008. |
Written Opinion for Application No. PCT/US2008/060846, dated Aug. 6, 2008. |
Written for Application No. PCT/US2008/060860, dated Aug. 5, 2008. |
Written Opinion for Application No. PCT/US2008/060862, dated Aug. 5, 2008. |
Written Opinion for Application No. PCT/US2008/060872, dated Aug. 5, 2008. |
European Examination Report for Application No. 08746310.5, dated Aug. 8, 2011. |
Office Action for Australian Application No. 2008242699, dated Sep. 22, 2011. |
Second Chinese Office Action for Application No. 200880011137.X, dated Sep. 1, 2011. |
Russian Office Action for Application No. 2009140597/28(057707), dated Mar. 22, 2012. |
Office Action for Gulf Cooperation Council Application No. GCC/P/2008/10631, dated Sep. 19, 2011. |
Russian Office Action for Application No. 2009139833/28(056527), dated Jan. 23, 2012. |
Second Office Action for Chinese Application No. 200880012623.3, dated Nov. 9, 2011. |
Extended European Search Report for Application No. 12158736.4, dated May 2, 2012. |
Extended European Search Report for Application No. 12160527.3, dated Apr. 30, 2012. |
Extended European Search Report for Application No. 12160711.3, dated Apr. 26, 2012. |
Office Action for Japanese Application No. 2010-504278, dated Aug. 14, 2012. |
Office Action for Japanese Application No. 2010-504288, dated Jul. 31, 2012. |
Office Action for Japanese Application No. 2010-504277, dated Jul. 24, 2012. |
Office Action for Japanese Application No. 2010-504282, dated Dec. 25, 2012. |
Number | Date | Country | |
---|---|---|---|
20080257423 A1 | Oct 2008 | US |
Number | Date | Country | |
---|---|---|---|
60913121 | Apr 2007 | US |