1. Field of the Invention
The present invention relates to switching power conversions, and more particularly to switching power conversions capable of turning off a secondary side switch when abnormal load variations or light load status is detected.
2. Description of the Related Art
In supplying the power for electronic equipments, switching power converters are widely adopted due to the advantages of high conversion efficiency and small component size they possess.
Taking the flyback AC-to-DC power adapter as an example,
In the architecture, the NMOS transistor 101 is used to control the power transformation through the main transformer 102 in response to a PWM signal VG1.
The main transformer 102 is used to transfer the input DC power source VIN to a DC output voltage VO.
The NMOS transistor 103 is coupled to the secondary side of the main transformer 102 to emulate a rectification diode to cut off the current path at the secondary side when the NMOS transistor 101 is on and release the magnetic flux to the capacitor 104 and a load (not shown in
The capacitor 104 is used for carrying the DC output voltage VO.
The secondary side synchronous rectification controller 105 is used to generate the secondary side gating signal VG2 to switch the NMOS transistor 103 according to a secondary side voltage signal VD which spikes high when the NMOS transistor 101 is turned on.
Through a periodic on-and-off switching of the NMOS transistor 101, which is driven by the PWM signal VG1 generated from a PWM controller (not shown in
However, when the DC output voltage VO experiences steep load transitions, the turn-on time of the NMOS transistor 101 controlled by the PWM signal VG1 will exhibit large variations for a transient period, and the NMOS transistor 103 may thereby not be switched at the right instants during the transient period due to possible failure of the secondary side gating signal VG2 to follow the dramatic variations of the turn-on time of the NMOS transistor 101, which will pose a risk of damaging the adapter. In addition, when the adapter is under a light load, the power dissipated in driving the NMOS transistor 103 may be more than that dissipated in a rectification diode of an adapter without a secondary side synchronous rectification controller.
Therefore, there is a need to provide a solution capable of switching off the secondary side switch appropriately when the adapter experiences steep load transitions or light load condition, to prevent possible disasters and/or minimize the power consumption.
One objective of the present invention is to provide a secondary side protection method for a switching power converter to appropriately switch off a secondary side switch when the adapter experiences steep load transitions or light load condition, to prevent possible disasters and/or minimize the power consumption.
Another objective of the present invention is to further provide a secondary side protection apparatus for a switching power converter to appropriately switch off a secondary side switch when the adapter experiences steep load transitions or light load condition, to prevent possible disasters and/or minimize the power consumption.
To achieve the foregoing objectives of the present invention, a secondary side protection method for a switching power converter is proposed to turn off a secondary side switch according to a secondary side voltage signal, wherein the secondary side voltage signal has falling edges corresponding to the start instants of secondary side discharge periods, and rising edges corresponding to the end instants of the secondary side discharge periods, the method comprising the steps of: measuring the time interval between two adjacent the rising edges repeatedly to derive discharge end cycle times; and generating a first turn-off signal to turn off the secondary side switch when the relative difference of two successive the discharge end cycle times exceeds a predetermined percentage.
To achieve the foregoing objectives, the present invention further provides a secondary side protection apparatus for a switching power converter to turn off a secondary side switch according to a secondary side voltage signal, wherein the secondary side voltage signal has falling edges corresponding to the start instants of secondary side discharge periods, and rising edges corresponding to the end instants of the secondary side discharge periods, the apparatus comprising: a cycle time measuring unit, used for measuring the time interval between two successive the rising edges repeatedly to derive discharge end cycle times; and a transient protection module, used for generating a first turn-off signal to turn off the secondary side switch when the relative difference of two successive the discharge end cycle times exceeds a predetermined percentage.
To make it easier for our examiner to understand the objective of the invention, its structure, innovative features, and performance, we use preferred embodiments together with the accompanying drawings for the detailed description of the invention.
a is the waveforms diagram illustrating the operation of the apparatus in
b is the waveforms diagram illustrating the operation of the apparatus in
c is the waveforms diagram illustrating the operation of the apparatus in
a is the waveforms diagram illustrating the operation of the circuit in FIG. 6 during a CCM to DCM transition.
b is the waveforms diagram illustrating the operation of the circuit in
The present invention will be described in more detail hereinafter with reference to the accompanying drawings that show the preferred embodiment of the invention.
Please refer to
The SR on/off Control Module 201 is used to generate a turn-on signal VSET2 and a normal turn-off signal VNORMAL
The Abnormal State Detection Module 202 is used to generate a compulsory turn-off signal VOFF to compulsorily switch off the secondary side transistor when the secondary side voltage signal VD is in an abnormal state corresponding to a steep load transition that the relative difference of two adjacent time intervals of the rising edges exceeds a predetermined percentage, or a light load condition that the time interval between the rising edge and the falling edge exceeds a predetermined period.
The OR gate 203 has two inputs coupled to the normal turn-off signal VNORMAL
The SR Latch 204 and the driver 205 are used to generate a secondary side gating signal VG2 according to the turn-on signal VSET2 and the turn-off signal VRESET2, wherein the secondary side gating signal VG2 will be at low logic level when the turn-off signal VRESET2 is at high logic level.
According to the secondary side synchronous rectification controller in
In step a, the rising edges of the secondary side voltage signal represent the end instants of the secondary side discharge periods.
In step b, the predetermined percentage is for example but not limited to 5%.
In step c, the lighter the load is, the longer the discharge off period will be.
In step d, the predetermined period can be for example but not limited to 50% of the discharge end cycle time corresponding to previous two adjacent rising edges.
The Abnormal State Detection Module 202 in
The comparator 401 is used to generate a first reset signal VRESET1 according to a secondary side voltage signal VD and a first reference voltage Vth,on, and the comparator 402 is used to generate a first set signal VSET1 according to the secondary side voltage signal VD and a second reference voltage Vth,dischend, wherein Vth,dischend is greater than Vth,on.
The latch 403 is used to generate a secondary side discharge status signal V2nddisch according to the first reset signal VRESET1 and the first set signal VSET1, wherein the secondary side discharge status signal V2nddisch is a pulse signal of which the rising edges represent the end instants of the secondary side discharge periods and the falling edges represent the start instants of the secondary side discharge periods.
The toggling unit 404 is used to generate a first select signal Vsela and a second select signal Vselb according to the V2nddisch, wherein the pulses of Vsela are interleaved with the pulses of Vselb.
The one-shot unit 405 is used to generate a first discharging pulse RESETA according to Vsela, and the one-shot unit 406 is used to generate a second discharging pulse RESETB according to Vselb.
The switch 407 is used to discharge the capacitor 411 in response to RESETA, and the switch 408 is used to discharge the capacitor 412 in response to RESETB.
The current source 409 and the capacitor 411 are used to generate a first ramp signal VRAMPA under the control of Vsela, and the current source 410 and the capacitor 412 are used to generate a second ramp signal VRAMPB under the control of Vselb, wherein VRAMPA and VRAMPB both have a basic symbol consisted of a ramp-up portion and a hold portion, and when VRAMPA exhibits the ramp-up portion, VRAMPB is then exhibiting the hold portion, and vice versa. The voltages of VRAMPA and VRAMPB in the hold portions represent the secondary side discharge end cycle times.
The transient protection module 413 is used for generating a first turn-off signal VOFF1 according to VRAMPA and VRAMPB at the rising edges of V2nddisch to turn off the secondary side transistor when the relative difference of two successive the secondary side discharge end cycle times, which are represented by the voltages of VRAMPA and VRAMPB in the hold portions, exceeds a predetermined percentage. The predetermined percentage can be for example but not limited to 5%.
The light load detection module 414 is used for measuring the time interval between the rising edge and the falling edge of V2nddisch repeatedly to derive discharge off periods by getting sample voltages of VRAMPA or VRAMPB in the ramp-up portions, which are determined by Vsela at the falling edges of V2nddisch; and generating a second turn-off signal VOFF2 to turn off the secondary side transistor at the falling edges of V2nddisch when the sample voltage, which represents the discharge off period, exceeds a predetermined threshold voltage, which represents a predetermined period. The predetermined period can be for example but not limited to 50% of the discharge end cycle time corresponding to previous two adjacent rising edges of V2nddisch.
The OR gate 415 has two inputs coupled to the first turn-off signal VOFF1 and the second turn-off signal VOFF2 respectively, and an output for generating the compulsory turn-off signal VOFF which will be at high logic level when either of the two inputs is at high logic level.
Please refer to
Please refer to
Please refer to
The transient protection module 413 can be implemented with the circuit in
The amplifier 601 and the resistors 602˜604 are used to generate a first threshold voltage VREFA which is 95% of VRAMPA, and a second threshold voltage VREFA
The comparator 605 has a positive input coupled to VRAMPB, a negative input coupled to VREFA, and an output for providing an under-low-bound signal VPREOFFB, which will be at low logic level when VRAMPB is lower than VREFA, and be at high logic level otherwise.
The comparator 606 has a negative input coupled to VRAMPB, a positive input coupled to VREFA
The NAND gate 607 has two inputs coupled to VPREOFFB and VNOTENDB respectively, and an output for generating an out-of-bound signal VChange which will be at high logic level when either of the two inputs is at low logic level, that is, when VRAMPB is lower than 95% of VRAMPA or higher than 105% of VRAMPA, VChange will be at high logic level.
The latch 608 has a data input coupled to VChange, a clock input coupled to V2nddisch, and a state output for providing the first turn-off signal VOFF1. The first turn-off signal VOFF1 will take on the logic value of VChange at the rising edge of V2nddisch, and when VOFF1 exhibits high logic level, it means that the relative difference of two previous secondary side discharge end cycle times exceeds the predetermined percentage of 5%.
Please refer to
Please refer to
The pair of amplifiers 801˜802 and the resistors 803˜806 are used to generate a third threshold voltage VL
The comparator 807 has a positive input coupled to VRAMPA, a negative input coupled to VL
The comparator 808 has a positive input coupled to VRAMPB, a negative input coupled to VL
The switch 809 has two inputs coupled to VL
The latch 810 has a data input coupled to VL
Please refer to
Through the implementation of the preferred embodiments of the present invention, a switching power converter is enabled to appropriately switch off a secondary side switch when it experiences steep load transitions or light load condition, and thereby prevent possible disasters and/or minimize the power consumption.
While the invention has been described by way of example and in terms of preferred embodiments, it is to be understood that the invention is not limited thereto. To the contrary, it is intended to cover various modifications and similar arrangements and procedures, and the scope of the appended claims therefore should be accorded the broadest interpretation so as to encompass all such modifications and similar arrangements and procedures.
In summation of the above description, the present invention herein enhances the performance than the conventional structure and further complies with the patent application requirements and is submitted to the Patent and Trademark Office for review and granting of the commensurate patent rights.
Number | Name | Date | Kind |
---|---|---|---|
5206800 | Smith | Apr 1993 | A |
5768118 | Faulk et al. | Jun 1998 | A |
6618274 | Boylan et al. | Sep 2003 | B2 |
6836414 | Batarseh et al. | Dec 2004 | B1 |
7636249 | Hu | Dec 2009 | B2 |
7660134 | Imai et al. | Feb 2010 | B2 |
20080278975 | Degen et al. | Nov 2008 | A1 |
Number | Date | Country | |
---|---|---|---|
20110122535 A1 | May 2011 | US |