The present invention relates to a secondary stage sample separation device, a sample separation system, and a method of carrying out a multiple stage separation of a fluidic sample.
In liquid chromatography, a fluidic sample and an eluent (liquid mobile phase) may be pumped through conduits and a column in which separation of sample components takes place. The column may comprise a material which is capable of separating different components of the fluidic analyte. Such a packing material, so-called beads which may comprise silica gel, may be filled into a column tube which may be connected to other elements (like a sampler, a detector) by conduits.
Two-dimensional separation of a fluidic sample denotes a separation technique in which a first separation procedure in a first separation unit is performed to separate a fluidic sample into a plurality of fractions, and in which a subsequent second separation procedure in a second separation unit is performed to further separate at least one of the plurality of fractions into sub-fractions. Two-dimensional liquid chromatography (2D LC) may combine two liquid chromatography separation techniques and plot the time dependency of detection events along two orthogonal time axes.
Two-dimensional liquid chromatography apparatuses are powerful, but are also complex in construction, large in size, and have limited flexibility.
It is an object of the invention to enable multiple stage or multiple dimension sample separation with a high degree of flexibility. The object is solved by the independent claims. Further embodiments are shown by the dependent claims.
According to an exemplary embodiment of the present invention, a (for instance mobile, in particular configured to be spatially movable or displaceable, more particularly configured to be transportable by rolling) secondary stage sample separation device for separating at least a portion of a fluidic sample (wherein a fluid may be a liquid and/or a gas, optionally comprising solid particles) is provided, wherein the secondary stage sample separation device comprises a fluidic interface configured for forming a detachable (i.e. connectable or disconnectable by a user, for instance by plugging any primary stage sample separation device to the fluidic interface for connecting the devices and for unplugging the primary stage sample separation device from the fluidic interface for disconnecting the devices; the attaching and detaching may be accomplished by the user by hand or using a tool) fluidic coupling between a primary stage sample separation device and the secondary separation device so that the fluidic sample separated by the primary stage sample separation device is fluidically supplyable to the secondary stage sample separation device via the fluidic interface for further separation, wherein the secondary stage sample separation device is configured for further separating (i.e. for performing a further separation of at least a portion of the fluidic sample which has already been pre-separated by the primary stage sample separation device) at least a portion of the supplied fluidic sample independent (or irrespective) of a flow rate of the fluidic sample supplied from the primary stage sample separation device at the fluidic interface (i.e. the two values of the flow rate according to which the two devices operate do not need to be matched prior to their coupling via the fluidic interface, but in contrast to this the secondary stage sample separation device can be configured to adapt its operation to any flow rate value provided by a presently connected primary stage sample separation device).
According to another exemplary embodiment of the present invention, a sample separation system for carrying out a multiple stage separation of a fluidic sample is provided, wherein the sample separation system comprises a (in particular static, more particularly configured to be spatially fixed or immobile, still more particularly installed at a spatially fixed position) primary stage sample separation device for separating a fluidic sample, and a (in particular mobile) secondary stage sample separation device having the above mentioned features detachably fluidically coupleable (or actually detachably fluidically coupled) to the primary stage sample separation device via the fluidic interface and configured for further separating at least a portion of the fluidic sample supplied and separated by the primary stage sample separation device.
According to another exemplary embodiment of the present invention, a method of carrying out a multiple stage separation of a fluidic sample is provided, wherein the method comprises (optionally moving a mobile secondary stage sample separation device towards a static primary stage sample separation device) fluidically coupling a primary stage sample separation device to a secondary stage sample separation device (in particular a secondary stage sample separation device having the above mentioned features) by attaching a fluid handling interface (hereafter also referred to as “fluidic interface”of the secondary stage sample separation device to a fluid outlet (in particular a waste conduit) of the primary stage sample separation device, and carrying out a primary stage separation of the fluidic sample. The secondary stage sample separation device carries out a secondary stage separation of at least a portion of the fluidic sample by further separating at least a portion of the separated fluidic sample provided at the fluidic interface. After carrying out the primary stage separation and the secondary stage separation, the fluidic interface is detached from the primary stage sample separation device to thereby fluidically decouple the secondary stage sample separation device from the primary stage sample separation device (and optionally, after the detaching, the mobile secondary stage sample separation device may be moved away from the static primary stage sample separation device (in particular, the mobile secondary stage sample separation device may be moved towards another static primary stage sample separation device for carrying out another multiple stage separation of another fluidic sample by repeating the procedures of fluidically coupling, primary stage separating, and secondary stage separating in cooperation between the mobile secondary stage sample separation device and the other static primary stage sample separation device)).
In the context of this application, the term “fluidic sample” may particularly denote any liquid and/or gaseous medium, optionally including also solid particles, which is to be analyzed. Such a fluidic sample may comprise a plurality of fractions of molecules or particles which shall be separated, for instance small mass molecules or large mass biomolecules such as proteins. Since separation of a fluidic sample into fractions involves a certain separation criterion (such as mass, volume, chemical properties, etc.) according to which a separation is carried out, each separated fraction may be further separated by another separation criterion (such as mass, volume, chemical properties, etc.) or finer separated by the first separation criterion (under improved conditions), thereby splitting up or separating a separate fraction into a plurality of sub-fractions.
In the context of this application, the term “sample separation device” may particularly denote any apparatus which is capable of separating different fractions of a fluidic sample by applying a certain separation technique. Particularly, two separation units may be provided in such a sample separation system when being configured for a two-dimensional separation. This means that the sample is first separated in accordance with a first separation criterion, and at least one or some of the fractions resulting from the first separation are subsequently separated in accordance with a second, different, separation criterion ore more finely separated in accordance with the first separation criterion. The term “separation unit” may particularly denote a fluidic member through which a fluidic sample is transferred and which is configured so that, upon conducting the fluidic sample through the separation unit, the fluidic sample will be separated into different groups of molecules or particles (called fractions or sub-fractions, respectively). An example for a separation unit is a liquid chromatography column which is capable of trapping or retarding and selectively releasing different fractions of the fluidic sample.
According to an exemplary embodiment of the invention, a secondary stage sample separation apparatus is provided which has a detachable fluidic interface at its fluidic inlet. Hence, it can be simply attached to or detached from a presently used primary stage sample separation device which thereby can be reversibly extended to a multistage sample separation system. Such a detachable fluidic interface may be simply plugged by a user to a fluidic outlet of the primary stage sample separation device. After such a temporarily established ad hoc multistage sample separation system has been used for a user-defined non-permanent multi-dimensional fluid separation application and the application has been finished, the primary stage sample separation device and the secondary sample separation device may be again separated from one another by a simple unplugging operation at the fluidic interface. Then, the primary stage sample separation device is ready for a new standalone separation of a further fluidic sample, and the secondary stage sample separation device is ready to be connected to another primary stage sample separation device via the multipurpose fluidic interface. When providing such a universally usable secondary stage sample separation device, there is the challenge that different primary stage sample separation devices to be connected via the fluidic interface to the secondary stage sample separation device are usually operated autonomously so that they may have different requirements in terms of flow rate values of fluidic samples to be separated within a mobile phase. In order to enable a user to use the secondary stage sample separation device with different primary stage sample separation devices having different flow rate requirements, the secondary stage sample separation apparatus can have a corresponding provision at the fluidic interface to cope with substantially any desired flow rate. Thus, a highly flexibly operable secondary stage sample separation apparatus is provided, which allows to extend substantially any primary stage sample separation device to a two, or more generally multiple, stage sample separation system. Also retrofitting a primary stage sample separation device into a multi-dimensional sample separation system is possible by adding this secondary stage sample separation device.
In the following, further exemplary embodiments of the secondary stage sample separation device, the sample separation system, and the method will be explained.
According to an exemplary embodiment of the invention, a secondary stage sample separation apparatus is provided which is mobile. This means that the secondary stage sample separation apparatus can be flexibly moved by a user to any desired primary stage sample separation device (which can be usually operated as a standalone device for sample separation when being uncoupled from the secondary stage sample separation apparatus) to which the secondary sample separation device can be connected for temporarily establishing a multidimensional sample separation system. In this multidimensional sample separation system, the primary stage performs the first sample separation and the detachably fluidically connected secondary stage performs a further separation. By configuring the secondary stage sample separation device as a spatially mobile device, it can be transported by a user to any desired primary stage sample separation device.
In an embodiment, the secondary stage sample separation device comprises a flow rate adapter configured for performing an adaptation between a value of the actual flow rate of the fluidic sample supplied by the primary stage sample separation device and a value of a flow rate, in particular a smaller flow rate value, according to which the secondary stage sample separation device is configured to operate with. According to this preferred embodiment, a provision is taken at or next or close to the fluidic interface which adapts a configurable secondary stage flow rate to a given flow rate of a presently connected primary stage sample separation device. In other words, the secondary stage sample separation device may have the flexibility to adjust its own flow rate properties so as to be able to cooperate with the flow rate conditions of a presently connected primary stage sample separation device. Such a flow rate adaptation is highly advantageous, since a completely independent operation of the secondary stage sample separation apparatus, regardless which flow rate is provided by the primary stage sample separation apparatus, could for instance result in an overflow of fluidic sample at the fluidic interface. By the provision of a flow rate adapter, the flexibly connected multiple stage sample separation system adapts itself in the secondary stage to obtain a synchronized flow rate. This may be accomplished without requiring any user action.
In an embodiment, the flow rate adapter is configured for performing the adaptation by splitting the fluid supplied to the secondary stage sample separation device into a first portion (for instance directed into a first flow path) corresponding to the flow rate used in the secondary stage sample separation device and used for further separation of the fluidic sample, and into a second portion (for instance directed into another second flow path), in particular being drained to a waste conduit or a waste container or can be sent to an additional fluidic sample detector or fraction collection device. In this embodiment, a flow rate provided by the primary stage which is too high for the secondary stage is conformed to the requirements of the secondary stage downstream of the fluidic interface by splitting the flow into a use path and into a waste path, or into two use paths in case where an additional detector is used. In the first use path with the desired flow rate of the secondary stage sample separation device, the corresponding portion of the fluidic sample can then be made subject to a further separation. The fluid in the waste path (or the second use path) can be guided to a waste container or can be stored temporarily for further processing or documentation purposes (or can be subjected to further detection).
In an embodiment, the flow rate adapter is configured for performing the adaptation by buffering consecutive portions of the fluidic sample supplied by the primary stage sample separation device into a plurality of buffer volumes, in particular sample loops, and for consecutively forwarding the buffered portions of the fluidic sample in the various buffer volumes for the further separation. In such an embodiment, a flow rate of the primary stage exceeding a desired flow rate for the secondary stage can be adjusted or adapted to one another by temporarily parking fluid packets provided by the primary stage in dedicated buffer volumes. Each of the buffer volumes may hence temporarily store a dedicated fluid packet coming from the primary stage.
For instance, these buffer volumes may be configured as sample loops provided between different fluidic ports of a fluidic valve. In the context of this application, the term “fluidic valve” may particularly denote a fluidic component which has fluidic interfaces, wherein upon switching the fluidic valve selective ones of the fluidic interfaces may be selectively coupled to one another so as to allow fluid to flow along a corresponding fluidic path, or may be decoupled from one another, thereby disabling fluid communication. By switching the fluidic valve, the individual fluid packets in the buffer volumes may then be consecutively supplied for further separation to a sample separation unit of the secondary stage sample separation device. Thus, valve switching may be controlled in such a manner that a new fluid packet from one of the buffer volumes is only introduced into the separation flow path of the secondary stage sample separation device when the latter is again ready to receive such a new fluid packet. Hence, also by the buffering or temporary parking of individual fluid packets in one or more buffer volumes, the flow rate adaptation may be performed.
In an embodiment, the flow rate adapter is configured for performing the adaptation by defining (or assigning) a flow rate to one or a plurality of buffer volumes, in a particular way, so as to buffer or park (for instance temporarily store in a respective one of the buffer volumes) a specific representative portion of the fluidic sample relating to a region of interest of a separation result (such as a separation spectrum, in particular a chromatogram in case of a chromatographic separation) for consecutively forwarding this buffered portion as the fluidic sample for the further separation.
In an embodiment, the flow rate adapter is configured for performing the adaptation by guiding the fluidic sample provided by the primary stage sample separation device into a selected one of a plurality of (for instance alternatively selectable, in particular fluidically parallel) sample separation paths in the secondary stage sample separation device, wherein each of the sample separation paths may be operable in accordance with an assigned flow rate, so as to obtain a match between the flow rate value of the primary stage sample separation device with a corresponding flow rate value assigned to the selected one of the multiple sample separation paths. In such an embodiment, multiple parallel flow paths may be provided in the secondary stage sample separation device, each configured for processing fluid with a respective flow rate. Hence, a given flow rate of the fluid originating from the primary stage sample separation device may be detected, and the corresponding best suitable one of the flow paths in terms of flow rate may be selected so as to guide the fluid coming from the primary stage into the appropriate flow path of the secondary stage.
In an embodiment, when the flow rate assigned to the presently connected primary stage sample separation device is smaller than a flow rate value processable by the secondary stage sample separation device, a flow rate measurement unit of the secondary stage sample separation device may detect this fact and may temporarily interrupt the further separation until a sufficiently large new fluid packet has arrived from the primary stage sample separation device. Then, secondary separation may be continued.
In an embodiment, the flow rate adapter comprises a modulator valve and a flow rate measurement unit for measuring a flow rate in the secondary stage sample separation device, wherein the modulator valve is controlled to switch in accordance with a measured flow rate so as to consecutively forward a predefined amount of the fluidic sample for further separation with each switch. Such a modulator valve may be a fluidic valve formed of two valve bodies which are configured to be movable relative to one another. One of these two valve bodies may have ports to be connected to fluid conduits for a fluid connection with various fluidic members of the secondary stage sample separation device. The other valve body may comprise channels such as grooves, which can fluidically connect or disconnect the respective ports in different ways in different switching states. For instance, the valve body having ports may be a stator, whereas the other valve body having the channels may be a rotor. Switching of the valve may be performed under control of a control unit such as a microprocessor. Switching may be performed under consideration of a present flow rate measured by the flow rate measuring unit. Therefore, the supply of new fluid packets to be processed (such as to be further separated) can be synchronized in accordance with the present flow rate.
In an embodiment, the fluidic interface is configured for being fluidically coupled to a waste conduit of the primary stage sample separation device. In a conventional one-dimensional sample separation device, which the primary stage sample separation device can be, the separated fluid may be guided towards a waste container via a waste conduit. In order to extend such a standalone primary stage sample separation device to a multiple stage sample separation system by connecting the secondary stage sample separation device, the latter may have a provision at its fluidic interface which allows to guide the fluid outlet towards the waste conduit to a fluidic input (at the fluidic interface) of the secondary stage sample separation device. Hence, the primary stage sample separation device is a sample separation device which needs not be specifically configured for multidimensional sample separation, but which may also operate autonomously for one-dimensional sample separation.
In an embodiment, the fluidic interface is configured as a snap-fit connector, a fitting piece of a two-part fitting (for instance a male fitting piece cooperating with a female fitting piece of the primary stage, or vice versa), a lever-based connector, a bayonet connector or a screw connector. In one embodiment, the fluidic interface has only one mechanical connection provision of one of the mentioned type or of another type. In another embodiment, multiple of such connection provisions may be provided at the fluidic interface, so that a user can select any desired of these coupling provisions for establishing a mechanical and fluidic coupling with the primary stage sample separation device. This allows to extend the flexibility of a user for using different kinds of primary stage sample separation devices together with the secondary stage sample separation device.
In an embodiment, the secondary stage sample separation device comprises a cart (such as a carriage or a vehicle) by which the secondary stage sample separation device is movable by a user. By mounting the fluidic components of the secondary stage sample separation device on a cart, which may for instance have a support for carrying the components of the secondary stage sample separation device and wheels for moving the cart, the secondary stage sample separation device may be flexibly transported by a user to any desired primary stage sample separation device in a laboratory or in another environment.
Therefore, multidimensional sample separation is possible by having a plurality of compact primary stage sample separation devices and only one secondary stage sample separation device (or a smaller number of secondary stage sample separation devices as compared to the number of primary stage sample separation devices) being capable of serving any of these primary stage sample separation devices for temporarily establishing a multiple stage sample separation system.
In an embodiment, the secondary stage sample separation device comprises a processor (as a control unit) configured for controlling the further sample separation by the secondary stage sample separation device without controlling operation of the sample separation by the primary stage sample separation device. According to this embodiment, in fundamental contrast to conventional two-dimensional sample separation systems, the primary stage sample separation device operates autonomously by its own control unit such as a processor. Additionally, a separate processor is provided in the secondary stage sample separation device, wherein the latter processor controls operation of the secondary stage sample separation device alone and may control additionally flow adaptation at the fluidic interface between the primary stage and the secondary stage. In one embodiment, the processor of the primary stage and the processor of the secondary stage operate completely independently, i.e. without communicating with one another and/or without synchronizing their operation. In this way, it is possible that no adaptation of a conventional primary stage sample separation device is necessary to extend it by use of the secondary stage sample separation device according to an exemplary embodiment of the invention to establish a non-permanent multidimensional sample separation system.
In an embodiment, the processor is configured for synchronizing the secondary stage sample separation device with the primary stage sample separation device based on a predefined reference peak resulting from the sample separation by the primary stage sample separation device. Although the two processors can operate independently from one another, a synchronization of the operation of the primary stage and the secondary stage can be performed in terms of timing by the processor of the secondary stage sample separation device alone. In order to obtain such a synchronization, which is advantageous to derive a meaningful two-dimensional detection result, a preknown reference peak may be taken as a basis for synchronization of the timing of the secondary stage sample separation.
In an embodiment, the secondary stage sample separation device is configured for receiving data indicative of the sample separation by the primary stage sample separation device and is configured for adapting the further sample separation by the secondary stage sample separation device in accordance with the received data. In such an embodiment, the secondary stage sample separation device may be coupled to the primary stage sample separation device in such a manner that a data transfer from the primary stage to the secondary stage is enabled. For instance, the secondary stage may then receive information with regard to flow rate, a chromatographic gradient, a chromatographic method in general, etc. so that the secondary stage sample separation device may then have a deeper basis of information for adapting its own configuration to the requirements and conditions given by the primary stage. For instance, such a data transfer may be performed via a for instance wireless or wired communication interface of the secondary stage sample separation device which can be connected to a data line of the primary stage to thereby receive this data.
In an embodiment, the secondary stage sample separation device comprises an interface detector at the fluidic interface configured for redetecting (i.e. detecting again) the fluidic sample separated by the primary stage sample separation device. This redetection may occur prior to the further separation of the fluidic sample by the secondary stage sample separation device. Thus, in addition to a detector of the primary stage sample separation device which detects the separated fractions of the fluidic sample separated in the primary stage, an additional interface detector may be foreseen for instance at or close to the fluidic interface of the secondary stage sample separation device. By detecting the result of the sample separation of the primary stage, the secondary stage may receive further information with regard to the operation of the primary stage which may allow for a more refined adaptation of the operation of the secondary stage to synchronize it with the primary stage.
In an embodiment, the secondary stage sample separation device comprises a modulator valve configured for dividing the fluidic sample supplied by the primary stage sample separation device into a plurality of consecutive fluid packets and for consecutively guiding individual of the fluid packets into an analytical path of the secondary stage sample separation device in which the fluid packets of the fluidic sample are to be further separated. By a such a modulator valve, the flow originating from the primary stage may be separated into subsequent packets, wherein one packet after the other may be introduced into an analytical path of the secondary stage sample separation device. In this analytical path, a sample separation unit such as a chromatographic column may be provided which performs a separation of each of the fluid packets into sub-fractions. In other words, the primary stage may separate a fluidic sample into consecutive fractions each included in one or at least one of the fluid packets, and each fluid packet with one or more fractions may then be separated, under control of the modulator valve, into a plurality of sub-sections in the secondary stage.
In an embodiment, the analytical path comprises an analytical pump for pumping mobile phase to be mixed with the fluid packets and comprises a sample separation unit for further separating the fluidic sample in the mixture. Hence, the secondary stage sample separation can be a chromatographic separation in which an analytical pump pumps a mobile phase with a high pressure upon which mixing of this mobile phase with one of the fluid packets occurs and the transport of the respective fluid packet with one or more fractions of the fluidic sample to the secondary stage sample separation unit.
In an embodiment, the modulator valve comprises a plurality of buffer volumes, in particular sample loops, each for buffering a corresponding one of the fluid packets. Thus, parking loops as buffer volumes may form part of the modulator valve.
Additionally or alternatively, the secondary stage sample separation device may comprise a plurality of buffer volumes, in particular sample loops, each for buffering a corresponding one of the fluid packets, wherein the buffer volumes are provided separately from the modulator valve and are fluidically coupled to the modulator valve. In this embodiment, the fluid packets do not form part of or are not directly connected to the modulator valve, but are arranged separately from it.
In an embodiment, the primary and/or the secondary stage sample separation device is configured as a chromatography sample separation device (in particular a liquid chromatography sample separation device, a gas chromatography sample separation device or a supercritical fluid chromatography sample separation device) or an electrophoresis sample separation device (in particular a capillary electrophoresis sample separation device). However, alternative separating technologies may be applied as well. When the secondary stage sample separation device is configured for liquid chromatography, it can be combined with a primary stage liquid chromatography device to a two-dimensional liquid chromatography apparatus (2D-LC). However, also other combinations of the sample separation techniques are possible, for instance involving electrophoresis sample separation.
Advantageously, the primary stage separation and the secondary stage separation are at least partially orthogonal, i.e. separate the fluidic sample or a fraction thereof in accordance with a different separation criterion or based on a different extent of the same criterion.
In an embodiment, the sample separation system further comprises at least one further primary stage sample separation device configured for being alternatively fluidically coupleable to the secondary stage sample separation device via the fluidic interface. Therefore, multiple primary stage sample separation devices may be alternatively served by one and the same secondary stage sample separation apparatus to temporarily establish any two- or multidimensional sample separation system in a user-defined manner.
In an embodiment, the primary stage sample separation device alone is already itself a multiple stage sample separation device (for instance a two dimensional sample separation device, such as a 2D-LC). According to this embodiment, it is not only possible to form a two-dimensional sample separation system by combining a primary stage sample separation device with a secondary stage sample separation device, in contrast to this it is possible to provide a three-, four-, or five-dimensional sample separation system, or even a sample separation system with a still higher dimension.
In an embodiment, any of the primary and secondary stage sample separation devices may comprise a detector for detecting components of the separated fluidic sample. Such a detector for detecting the individual fractions and sub-fractions may be arranged downstream of the respective separating unit. Such a detector may operate on the basis of an electromagnetic radiation detection principle. For example, an electromagnetic radiation source may be provided which irradiates the sample passing through a flow cell with primary electromagnetic radiation (such as optical light or ultraviolet light). In response to this irradiation with primary electromagnetic radiation, there will be an interaction of this electromagnetic radiation with the fluidic sample so that this interaction can be detected based on variations in properties of the primary radiation (such as intensity, frequency, spectral distribution, propagation direction, vector of polarization or alike) or based on eventually emerging resulting secondary electromagnetic radiation, the said interaction being indicative of the concentration and/or kind of sample components contained in the fluidic fractions.
In an embodiment, any of the primary and secondary stage sample separation devices may comprise a sample injector for introduction of the fluidic sample into the separation system upstream of the respective separation unit. In such a sample injector of the primary stage, an injection needle may intake a metered amount of fluidic sample into a connected loop. After driving and inserting such an injection needle in a corresponding seat and upon switching a fluid injection valve, the fluidic sample may be injected into the path between a fluid drive and a separating unit. Upon such a switching operation, a mobile phase transported by the fluid drive and constituted by a solvent composition transports the sample to the separation unit and may get partially mixed with the fluidic sample. The secondary stage sample separation device may also be free of a sample injector.
In an embodiment, the primary stage separation unit and the secondary stage separation unit are configured so as to execute the respective sample separation in accordance with different separation criteria, particularly in accordance with at least partially orthogonal separation criteria. In this context, the term “orthogonal” may particularly denote the low degree or even lack of correlation between the retention parameters in the first and the second dimension in general or at least for the expected sample components.
In one embodiment, the entire fluidic sample supplied from the primary stage is further separated in the secondary stage. In another embodiment, only a part of the fluidic sample supplied from the primary stage is further separated in the secondary stage. Hence, the secondary stage may be operated in a comprehensive mode or in a heart-cut mode.
The separation unit of any of the stages may be filled with a separating material. Such a separating material which may also be denoted as a stationary phase may be any material which allows an different degree of interaction with sample components so as to be capable of separating different components of such a sample. The separating material may be a liquid chromatography column filling material or packing material comprising at least one of the group consisting of polystyrene, zeolite, polyvinylalcohol, polytetrafluorethylene, glass, polymeric powder, carbon, graphite, alumina, zirkonia, silicon dioxide, and silica gel, or any of above with chemically modified (coated, capped etc) surface. However, any packing material can be used which has material properties allowing a sample passing through this material to be separated into different components, for instance due to different degrees of interactions or affinities between the packing material and fractions of the analyte.
At least a part of any of the separation units may be fluid chambers filled with a separating material, wherein the separating material may comprise beads having a size in the range of essentially 0.1 μm to essentially 50 μm. Thus, these beads may be small particles which may be filled inside the separation section of the fluidic device. The beads may have pores having a size in the range of essentially 0.005 μm to essentially 0.2 μm. The fluidic sample may enter the pores, wherein an interaction may occur between the fluidic sample and the inner surface of the pores.
Any of the sample separation units may be a chromatographic column for separating components of the fluidic sample. Therefore, exemplary embodiments may be particularly implemented in the context of a liquid chromatography apparatus.
The sample separation system may be, in any of its stages, configured to conduct mobile phase through the system by means of a high pressure, particularly of at least 400 bar, more particularly of at least 1000 bar.
Other objects and many of the attendant advantages of embodiments of the present invention will be readily appreciated and become better understood by reference to the following more detailed description of embodiments in connection with the accompanied drawings. Features that are substantially or functionally equal or similar will be referred to by the same reference signs.
The illustration in the drawing is schematic.
Before, referring to the drawings, exemplary embodiments will be described in further detail, some basic considerations will be summarized based on which exemplary embodiments of the invention have been developed.
According to an exemplary embodiment of the invention, a second dimension sample separation device (or secondary stage sample separation device) with an assigned separation unit is provided which is configured to fit perfectly to any existing first dimension sample separation device (or primary stage sample separation device) on-the-fly.
The optimization of (U)HPLC methods for chromatographic resolution gains importance when samples become increasingly complex (i.e. having plenty of compounds). Yet frequently one would encounter evidence (such as a shoulder or tail on a chromatographic peak) or it is a fear that there might be a hidden component that co-elutes in parallel to a substance of interest. An important application example for such a scenario can be found in the pharmaceutical industry: The “impurity profiling” workflow seeks for impurities in the active pharmaceutical ingredient (API). Impurities have to be reported down to a level of 0.05% of the API. In this case it may be a huge effort to verify. Possibilities are the re-analysis of the sample using different HPLC column media or for example to use orthogonal separation techniques, like electrophoresis. It can be very helpful if a user has a two-dimensional liquid chromatography (2D-LC) system available. Still one would have to develop and optimize a complete 2D-LC method, dedicated for this actual application or a certain application class. The result can be a dramatic loss in performance and efficiency (increased effort and longer time-to-market) due to a potential loss in analysis speed and required optimization procedures. Especial in the initial learning phase, when a user is still doing method development, a sudden unexpected result may be disturbing (at least distracting). Slightest modifications may disrupt and the effect is gone. Even if a user switches from a one-dimensional separation device to a two-dimensional separation device by using the same type of column media, a user still faces the fact that the resolution may be different and the user may have lost the track.
In order to overcome the above-mentioned shortcomings, an exemplary embodiment of the invention provides a secondary stage sample separation device that can be easily transported to aid in making the second dimension separation independent of a first (one) dimension method. For instance, an existing 1D-LC setup (as primary stage sample separation device) can be simply extended on-the-fly with a second dimension (i.e. the secondary stage sample separation device) that can be used as extension-analyzer that can automatically resolve additional features.
A secondary stage sample separation device according to an exemplary embodiment of the invention can include one of the following features:
a pump operable to ensure a predefinable flow rate the second dimension (see
a set of columns (preferably such that show as much as possible orthogonal separation behavior) and mobile phases for scouting (see
several sample loops with varying volumes (see
capability of reading 1D-method or raw data from previous runs to align operation of the 2D extension
lose trigger cable for start indication, or analog pressure synchronization
inside T-piece with fluidic valve for flow calibration
According to an exemplary embodiment of the invention, a method of adding a second dimension separation (by providing a secondary stage sample separation device) to a running conventional system (i.e. the primary stage sample separation device) is provided, without a need to modify any hardware, software, firmware components or programmed methods of the existing system (i.e. of the primary stage sample separation device).
According to another exemplary embodiment of the invention, a second dimension subsystem (i.e. the secondary stage sample separation device) is provided, which can be attached to the outlet of an existing system (i.e. the primary stage sample separation device) to analyze the effluent in the second dimension. The subsystem can be compact, transportable, capable of being operated independently of the first dimension, whereas its operation may be synchronized (in particular as slave) to the first dimension at certain reference points. The subsystem may bear accessory means providing extended independence (for instance a flow splitter, an active flow splitter, a pump as shown in
In an embodiment, when connected to the outlet of an existing 2D-LC setup (as primary stage sample separation device), then the above described cart (as secondary stage sample separation device) actually forms the third dimension.
The sample separation system 100 is constituted by a spatially static primary stage sample separation device 10 and a movable or mobile secondary stage sample separation device 90. They are flexibly and detachably connected to one another mechanically and fluidically via a waste conduit 58 of the primary stage sample separation device 10 and via a fluidic interface 89 of the secondary stage sample separation device 90. In the shown embodiment, the fluidic interface 89 can be a snap-fit connector. For accomplishing the fluidic and mechanical coupling of the primary stage sample separation device 10 and the secondary stage sample separation device 90 according to
The secondary stage sample separation device 90 is configured for further separating fractions of the fluidic sample into sub-fractions, which fractions are provided by the primary stage sample separation device 10 as a result of the initial separation of the fluidic sample. As will be described below in further detail, the sample separation system 100 is configured for carrying out two-dimensional liquid chromatography separation (2D-LC) of a fluidic sample.
Next, the operation of the primary stage sample separation device 10 will be explained. This operation can be a standalone operation, i.e. the primary stage sample separation device 10 may be operated completely independent of the optionally and flexibly connectable secondary stage sample separation device 90 when a single stage separation is sufficient. In such a standalone one-dimensional separation mode, waste conduit 58 is guided into a waste container 60 in which the separated fluidic sample is accumulated. In an extended two-dimensional separation mode as shown in
When taken alone, the primary stage sample separation device 10 operates as a one dimensional liquid separation system, as follows: A first pump 20 receives a mobile phase as a whole or as individual components that get mixed together by the first pump 20, from a first solvent supply 25, typically via a first degasser 27, which degases and thus reduces the amount of dissolved gases in the mobile phase. The first pump 20—as a mobile phase drive—drives the mobile phase through a first separating unit 30 (such as a chromatographic column) comprising a stationary phase. A first sampling unit 40 can be provided between the first pump 20 and the first separating unit 30 in order to subject or add (often referred to as sample introduction) a sample fluid (also denoted as fluidic sample) into the mobile phase. Switching of a fluidic valve 80 actually triggers the injection. The stationary phase of the first separating unit 30 is configured for separating compounds of the sample liquid. After detection of the separated fluidic sample by a first detector 50, the separated fluidic sample is further transported via waste conduit 58 and is then accumulated in the waste container 60.
A data processing unit 70, which can be a conventional PC or workstation, might be coupled (as indicated by the dotted arrows) to one or more of the devices in the primary stage sample separation device 10 in order to receive information and/or control operation. For example, the data processing unit 70 might control operation of the first pump 20 (for instance setting control parameters) and receive therefrom information regarding the actual working conditions (such as output pressure, flow rate, etc.). The data processing unit 70 might also control operation of the first solvent supply 25 (for instance setting the solvent/s or solvent mixture to be supplied) and/or the first degasser 27 (for instance setting control parameters such as vacuum level) and might receive therefrom information regarding the actual working conditions (such as solvent composition supplied over time, flow rate, vacuum level, etc.). The data processing unit 70 might further control operation of the first sampling unit 40 (for instance controlling sample injection or synchronization sample injection with operating conditions of the first pump 20). The first separating unit 30 might also be controlled by the data processing unit 70 (for instance selecting a specific flow path or column, setting operation temperature, etc.), and send—in return—information (for instance operating conditions) to the data processing unit 70. Accordingly, the first detector 50 might be controlled by the data processing unit 70 (for instance with respect to spectral or wavelength settings, setting time constants, start/stop data acquisition), and send information (for instance about the detected sample compounds) to the data processing unit 70.
In contrast to the primary stage sample separation device 10, the secondary stage sample separation device 90 is not intended to be operated as a standalone device. In contrast to this, operation of the secondary stage sample separation device 90 in terms of sample separation requires mechanical and fluidic connection between the primary stage sample separation device 10 and the secondary sample separation device 90 via the fluidic interface 89, as shown in
In the coupled state as shown in
As can be taken from
Downstream of the fluidic interface 89, the fluidic sample arriving from the primary stage sample separation device 10 (not shown in
At a fluidic T-piece 350 downstream of the interface detector 308, a part of the fluidic sample may be guided via a fluid restrictor 352 towards a waste 360, whereas another part (i.e. the rest) of the fluidic sample is guided towards a modulator valve 304. By configuring the fluid restrictor 352 to have an adjustable fluidic impedance or resistance, the individual amounts propagating towards waste 360 and towards modulator valve 304 can be adjusted in terms of flow rate adjustment between the two stages.
The modulator valve 304 is switchable under control of the control unit 97 (not shown in
However, the analytical path is, according to
Furthermore, adaptation of the flow rate between the two stages is also possible by switching the modulator valve 304 in such a manner that individual fluid packets originating from the primary stage can be buffered temporarily in one of a plurality of buffer volumes 300, configured as separate sample loops. Moreover, a flow rate measurement unit 306 may be provided for measuring a flow rate in the secondary stage sample separation device 90. The modulator valve 304 may be controlled to switch in accordance with a measured flow rate so as to consecutively forward a predefined amount of the fluidic sample for further separation with each switch. Hence, the flow rate measurement unit 306 may measure the flow rate and may supply measurement data to the processor 97 so as to control the flow rate adaptation. Thus, the fluid packets may be supplied packet-wise for further separation by firstly buffering them in one of the buffer volumes 300, and by an appropriately timed switching of the modulator valve 304 so that a new fluidic packet is only injected into one of the analytical paths when appropriate.
As can be taken from a detail 380 in
It can be furthermore taken from
As can be taken from
The flow rate adaptation pump 370 is operable so that only a desired flow rate is allowed to flow through the fluidic interface 89 of the secondary stage. In particular, a flow rate between a fluid inlet 1002 and a fluid outlet 1004 can be adjusted by the flow rate adaptation pump 370 under control of the control unit 97. The fluid with the adjustable flow rate flows via the fluid inlet 1002 through a flow rate adaptation valve 1006 and from there into a working chamber 1008 of a first piston pump 1010. A first piston 1012 reciprocates within the working chamber 1008 under control of the control unit 97. In the present scenario, the fluid flows into the working chamber 1008 with a flow rate which is defined by the motion pattern of the first piston 1012. Thus, the velocity according to which the first piston 1012 moves within the first working chamber 1008 under control of the control unit 97 defines the allowed flow rate at this moment. When the first piston 1012 has moved within the first working chamber 1008 up towards an end position in which it is not capable of receiving any further fluid, the flow rate adaptation valve 1006 is switched by the control unit 97 so that the first working chamber 1008 can be emptied towards the fluid outlet 1004 by an inverse motion of the first piston 1012. New fluid from the fluid inlet 1002 can now be accommodated in a second working chamber 1018 of a second piston pump 1020. In the period in which the fluid has been received in the first working chamber 1008, other fluid which has been previously filled into the second working chamber 1018 of the second piston pump 1020 has been guided towards the fluid outlet 1004 by a controlled motion of a second piston 1022. During the corresponding motion of the second piston 1022, the second working chamber 1018 has been emptied. This procedure can be repeated continuously. Thus, with a coordinated switching of the flow rate adaptation valve 1006 and a corresponding control of the movement of the pistons 1012, 1022, all under control of the control unit 97, the flow rate of the fluid flowing between the fluid inlet 1002 and the fluid outlet 1004 can be precisely defined.
It should be noted that the term “comprising” does not exclude other elements or features and the “a” or “an” does not exclude a plurality. Also elements described in association with different embodiments may be combined. It should also be noted that reference signs in the claims shall not be construed as limiting the scope of the claims.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/IB2014/062600 | 6/25/2014 | WO | 00 |