In general, the present invention relates to upwardly acting sectional doors. More particularly, the present invention relates to an upwardly acting sectional door system employing a motor-driven counterbalance system having a shaft, a torsional spring and cable to counterbalance the weight of the door. Most particularly, the present invention relates to a cable tensioner for maintaining the proper tension on the cable of such a door system.
Counterbalancing systems for sectional overhead doors have commonly employed torsion spring arrangements. The use of torsion springs in such sectional overhead doors is, in significant part, because the linear tension characteristics of a torsion spring can be closely matched to the substantially linear effective door weight as a sectional door moves from the open, horizontal position, where the door is largely track supported, to the closed, vertical position or vice versa. In this manner, the sum of the forces acting on such a sectional garage door may be maintained relatively small except for momentum forces generated by movement of the door by the application of manual or mechanical forces. In this respect, sectional overhead doors have been provided with lift cables or similar flexible elements attached to the bottom of the door and to cable storage drums mounted in spaced relation on a drive tube, which rotate when the drive tube is actuated.
In many cases, these cable storage drums have surface grooves that guide the lift cables on and off of the cable storage drum to prevent the coils or cable wraps from rubbing against each other and chafing which would occur if positioned in side-by-side engaging relationship or if coiled on top of each other. Lift cables sized to meet operational requirements for sectional overhead door applications are commonly constructed of multiple strand steel filaments that have a pronounced resistance to bending when stored on the circumference of the cable drums and, thus, require tension to remain systematically coiled or wrapped about the cable drums in the surface grooves therein.
A problem arises if tension is removed from one or both of the lift cables of a sectional overhead door in that the lift cables tend to unwrap or separate from the cable drums; thereafter, when tension is restored, the lift cables may not relocate in the appropriate grooves or in appropriate relation to adjacent cable wraps. In some instances, a cable wrap will locate on a groove further axially inboard of the door from its original position so that as the door moves to the fully opened position, the cable drum runs out of grooves for cable wraps, such that the lift cable coils about parts of the drum that are not designed for cable storage. In this instance, if the lift cable dislodges from the cable storage drum and engage the smaller radius of the counterbalance system drive tube, the leverage affected by the springs through the cable drum and cable is reduced such that the door will be extremely difficult or impossible to move. This is because the linear force between the door and the counterbalance springs relies on the leverage against the counterbalance spring being applied by the weight of the door operating through the radius of the cable storage drum grooves rather than a reduced radius portion of the cable drum or the drive tube for the counterbalance system
In other instances, the removal of tension from the lift cables can result in cable wraps or coils being axially displaced from the proper groove on the cable drum to overlie existing cable wraps stored on the cable drum, which may cause the length of cable between the cable drums at opposite ends of a door to assume a different effective operating length. In such case, the door may be shifted angularly in the door opening, with the bottom edge of the door no longer paralleling the ground and the ends of the door sections moving out of a perpendicular orientation to the ground. When thus angularly oriented, continued movement of the door can readily result in the door binding or jamming in the track system and, thus, being rendered inoperative.
In the instance of either of these operating anomalies occasioned by loss of tension in the lift cables, it is probable that the resultant tangling of the lift cables and/or jamming of the doors will prevent the door from further automatic or manual operation, leave the door in a partially open condition, and require qualified service personnel to repair or replace damaged components and reassemble and realign the door and counterbalance system components before the door is restored to normal operating condition.
There are a number of possible operating circumstances wherein tension in the lift cables of a counterbalance system for a sectional overhead door becomes reduced to such an extent that the lift cables may become mispositioned on or relative to the cable storage drums, thereby producing the problems discussed above. One example is when a door is rapidly raised from the closed to the open position at a velocity that is faster than the cable storage drums can rotationally react, such that slack is created in the lift cables. Another example is in the utilization of a motorized unit, such as a jackshaft type operator, that turns the counterbalance system shaft to open and close a sectional overhead door. A jack-shaft may create cable slack when the operator turns the cable storage drums without the door moving. Many jackshaft operators have motor controls and sensors that will determine if the operator is turning the counterbalance tube without the door moving to minimize cable slack which will result in the cables becoming entangled. However these methods are not exact nor are they instantaneous such that the operator could rotate the drive tube and cable drums through one or more revolutions before the sensors signal the motor controls to shut the motor off. During this time the cable is slack and if this occurs when the door is in the fully open position, the cables can become tangled preventing further movement of the door.
One approach to preventing cable mispositioning has involved utilization of grooves in the circumference of the cable storage drums, which are otherwise present for positioning and spacing cable as it is taken up during the raising of a garage door. In some instances, exaggerated or deep grooves have been employed in the cable storage drums in an effort to maintain the lift cables appropriately positioned during a loss of tension on the lift cables. While the use of grooves so configured may be helpful in preventing lift cable mispositioning in minor losses of tension, this approach does not solve the commonly encountered problem of appreciable slack being created in the lift cables.
Another approach to preventing cable mispositioning has involved utilization of retainers in the form of a hood, shroud or snubber associated with the cable drums. With these devices capturing the cable between the drum and the retainer, the proper cable positioning can be maintained for a particular size drum and system components. However, these retainers do not permit utilization on other than a particular one of the many different drum sizes and configurations employed by different manufactures for different door systems.
Thus, no solution to substantial cable slack in sectional overhead door systems having motor driven counterbalance systems, for cable drums of different designs and sizes, has been recognized in the industry.
Therefore, an object of the present invention is to provide a cable tensioner for a motor driven counterbalance system for a sectional overhead door that accommodates slack developed in a lift cable without attendant mispositioning of the lift cable on the cable storage drums when tension in the lift cables is restored. Another object of the present invention is to provide such a cable tensioner which is operative independent of the style, shape, or size of the cable storage drums of the counterbalance system of the door. A further object of the present invention is to provide such a cable tensioner wherein cable tension and thus, cable positioning on the cable drums, is maintained even in the event of the development of several feet of slack in the cable due to the cable drums being driven without attendant movement of the door.
Another object of the present invention is to provide a cable tensioner for a motor driven counterbalance system for a sectional overhead door which consists of springs, a cable engaging clip and mounting brackets for positioning the springs on the door. Yet another object of the invention is to provide such a cable tensioner that does not mount over or adjacent to the cable storage drums and does not require pulleys or other components to manage even substantial amounts of cable slack. Still a further object of the invention is to provide such a cable tensioner that employs a flexible wand, which may be formed unitary with the spring, that can deflect to maintain cable alignment with the cable drum grooves even when substantial slack is being taken up by the tensioner when the door is in the fully open position.
Still another object of the present invention is to provide a cable tensioner for a motor driven counterbalance system for a sectional overhead door that may employ cable storage drums having conventional guide grooves. A still further object of the present invention is to provide such a cable tensioner that does not affect the counterbalance system or alter its operational performance in a manner that could produce adverse effects on the operation of the door. A still further object of the present invention is to provide such a cable tensioner which mounts to the lower panel of the door and therefore does not require a ladder or special tools to install. A still further object of the present invention is to provide such a cable tensioner that is relatively inexpensive, requires no service, and can readily be retrofitted to existing motor driven counterbalance systems.
In general, the present invention contemplates a cable tensioner for a sectional overhead door having a motor-driven counterbalance system including, a spring-loaded axle, cable drums carried by the axle, cables attached to and interconnecting the cable drums and the door and forming and releasing cable wraps on the cable drums upon raising and lowering of the door, the cable tensioner having, a tension spring adapted to be mounted on the sectional door having a first end and a second end, the first end being adapted to engage the door and the second end being adapted to slidingly engage the cable, wherein the tension spring urges the second end to take up any slack in the cable.
A door system, generally indicated by the numeral 10, is shown in the accompanying drawings. Door system 10 generally includes an upwardly acting door D, such as a rolling door or a sectional door, as shown. Door system 10 is located within an opening defined by a framework 11 which may include a pair of vertically oriented jambs 12 that are horizontally spaced from each other and connected by a header 13 near their upper vertical extremity. Track assemblies, generally indicated by the numeral 15, may be supported on the framework 11, as by flag angles 14 that extend rearwardly from the jambs 12. Track assemblies 15 may include a generally vertical track section 16 and a generally horizontal track section 17 interconnected by an arcuate transition section 18. The track assemblies 15 may include channel-like track sections 16, 17, 18 that receive guide rollers 19 mounted on the door D. The rollers 19 and track assemblies 15 interact to guide the door from a generally vertical closed position (
To aid in the lifting of the door D, a counterbalance assembly, generally indicated by the numeral 20, is provided. The counterbalance assembly 20 generally includes an axle 21, a counterbalance spring 22, which may be a coil spring 30, as shown, and a cable C (
With reference to
To that end, a cable tensioner, generally indicated by the numeral 30 in the drawings, is provided. With reference to
Aside from maintaining alignment of the cable C as it is wound, the length of the second end 35 may be limited by other operating conditions. For instance, in a sectional door D, as shown in the drawings, the height of a door section 36 on which the cable tensioner 30 is mounted may limit the length of the second end 35 as the second end 35 might interfere with the movement of the door section 36, as by contacting a roller 19, as it travels through the transition section 18 of the track assembly 15. While the length of second end 35 will vary depending on the type of door D used, in the example shown, a second end length of approximately one half the height H of the door section 36 was found to be suitable.
The cable tensioner 30 may be mounted on a bracket, generally indicated by the numeral 40, which may, in the example of a coil spring, include a pair of tabs 41 spaced sufficiently to receive the tension spring 31 therebetween. A shaft 42, which may be formed by a bolt, as shown, extends between the tabs 41 and may pass through the body 33 of the tension spring 31 to secure the tension spring 31 to the tabs 41. Tabs 41 are, in turn, secured to the door D as by a crosspiece 43 that is mounted flush against the door D as by screws (not shown).
With reference to
In the example shown in the drawings, dog ears 50 each define an opening 51 through which the second end 35 of spring 31 may pass in securing the second end 35 of spring 31 to the clip 32. For example, as shown in
It will be appreciated, however, that a less elaborate clip may be suitable for connecting the second end 35 of spring 31 to the cable C. In an alternate embodiment depicted in
With reference to
Starting with the door D in a closed position (
Similarly, as the door D reaches an open position (
In the event that slack is created in the cable C, as shown in
To reduce the stress on the cable tensioner 30 as it is urged toward the open position (
As shown in the depicted embodiments, cable tensioner 30, 130 is mounted on the lowermost panel making it accessible in either the closed (
The second end 35 of tension spring 31 may be attached in any manner including the clips 32, 132 shown. The clips 32, 132 are preferable in that they are less likely to damage the cable C over extended use. Clips 32, 132 may be constructed of any material including metallic and nonmetallic materials, preferably providing low friction engagement with the cable C to prevent wear and fraying of the cable C.
Thus, it should be evident that the sectional door cable tensioner disclosed herein carries out one or more of the objects of the present invention set forth above and otherwise constitutes an advantageous contribution to the art. As will be apparent to persons skilled in the art, modifications can be made to the preferred embodiments disclosed herein without departing from the spirit of the invention, the scope of the invention herein being limited solely by the scope of the attached claims.
This application is a continuation of U.S. Ser. No. 10/465,318 filed Jun. 19, 2003 now abandoned.
Number | Name | Date | Kind |
---|---|---|---|
3160200 | McKee et al | Dec 1964 | A |
3412780 | Moler | Nov 1968 | A |
4736826 | White et al. | Apr 1988 | A |
4871007 | Abolins | Oct 1989 | A |
4892262 | Hurst | Jan 1990 | A |
5280879 | Kreuter | Jan 1994 | A |
6145570 | Mullet et al. | Nov 2000 | A |
6164014 | McDowell et al. | Dec 2000 | A |
6189266 | Mihalcheon | Feb 2001 | B1 |
6263947 | Mullet | Jul 2001 | B1 |
Number | Date | Country |
---|---|---|
2 805 305 | Aug 2001 | FR |
WO 9638644 | Dec 1996 | WO |
Number | Date | Country | |
---|---|---|---|
20060027343 A1 | Feb 2006 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10465318 | Jun 2003 | US |
Child | 11248979 | US |