Not Applicable
Not Applicable
Various structures, of both permanent and mobile nature, include a portal by which ingress and egress from an area confined therein is affected by use of a door. The door can be in many forms, including designs that use two or more subelements, which engage upon one another to occlude the portal. A particularly preferred door design includes use of a plurality of sub-elements in the form of door panels, each having a respective upper and lower long horizontal dimension and two opposing short vertical dimensions, all of which are interconnected to form a rectilinear shape with a thickness. The door panels are sequentially interlinked by one or more hinge elements along at least one horizontal edge such that the door panel sections operate collectively to block or otherwise occlude a portal. The door panels typically further include at least one rotating wheel on both vertical edges; rotating wheels, which are at least partially captured within a continuous track located opposite and equidistant from one another and on either side of the vertical axis of the portal. By having plural door panels, linked together by their respective horizontal axis, and moveable through the action of the rotating wheels along respective vertical edges, a sectional-type door can be readily operated to effectively occlude a portal while requiring a small amount of installation and operation space.
Sectional-type doors are capable of obtaining only one of three positions relative to a portal. A first position is where the interlinked sectional door panels are traversed to the furthest point relative to the continuous track such that the door is then in a “fully down” state and by the door being at a lowest aspect of the portal, the portal is fully occluded. A second position obtainable by a sectional-type door is where the interlinked sectional door panels are traversed to the closest point relative to the continuous track such that the door is then in a “fully up” state and by the door being at an upper aspect of the portal, the portal is completely unoccluded. The final position obtainable by a sectional-type door is where the interlinked sectional door panels are traversed to a point in between the fully down and fully up states. When a conventional sectional-type door is in at a point between the fully down and fully up states, by the nature of the interlinked door panels, the sectional-type door will depend from the upper aspect of the portal to a point above the lower aspect such that a gap exists between a lower most interlinked door panel and the lowest aspect achievable.
When sectional-type doors are employed as control points for a portal, there exists circumstances wherein it is desirable to have the sectional-type door partially open. Temperature control, accessing ventilation to exterior air sources, and visual inspection of interior spaces are routine issues which arise and in which a sectional-type door will be moved to a partial occlusion state. Due to the aforementioned nature of conventional sectional-type doors allowing for only partial occlusion in the lower region or aspect of a portal, such an opening is not conducive to remedying issues at hand; difficulty in venting high temperatures through a venting source located at point below the region of high temperature, hindrance of circulation by objects located on the ground or proximal to a lower opening, and difficulty in observing though a edifice significantly below eye level.
To remedy the deficiencies in conventional sectional-type door use in addressing issues of convenient access, numerous modification have been incorporated into the design of one or more of the panels of a sectional door. U.S. Pat. No. 3,927,709 to Anderson, et al. address ventilation control by modifying an upper door panel such that it can cam about an axis out of the vertical plane of the sectional door through interaction with a secondary continuous track segment. U.S. Pat. No. 4,141,403 to Church teaches to the use of sash-type window panes inserted into the construction of a sectional door panel, wherein the individual panes may be opened. U.S. Pat. No. 4,537,237 to Sepulveda, et al. incorporates a further set of pivots and hinges in the construction of panel interlinks such that one or more of the panels can be me louvered out of the vertical plane of the sectional-type door.
In related prior art, alternative means for allowing displacement of an individual door panel relatively to interlinked neighboring panels has focused specifically on controlling damage from impact. U.S. Pat. No. 5,720,332 to Nachreiner teaches to a panel, which can be deflected out of the vertical plane of the sectional door through rotation of the panel out of the continuous track. U.S. Pat. No. 5,535,805 to Kellogg et al. and U.S. Pat. No. 5,584,333 to Torchetti, et al. each address avoiding panel damage by allowing variations of a spring-biased track wheel to compress or deflect and thereby releasably disengage the continuous track until such point the track wheel is reinserted into the track.
Finally, the prior art has looked at easing installation of individual door panels to produce a sectional-type door assembly. U.S. Pat. No. 4,532,973 to DeFalco utilizes male and female profiled elements which are interdigitated as subsequent door panels are loaded into the continuous track and a sleeve element is inserted to prevent release of the door panels from the final assembly. U.S. Pat. No. 6,883,578 to Whitely utilizes a method of readily connecting subsequent door panels into a sectional-type door assembly by use of a one-way hinge element which allows for a “snap in place” fixture. U.S. Pat. No. 6,955,206 to Mullet, et al. incorporates hooks that engage into one another and are fixed in place by insertion of an interlock element.
There remains an unmet need for a means for allowing a sectional-type door to open in a region conducive to incremental functionality which does not require a door panel, or an aspect thereof, to displace outside the vertical plane of the door assembly, is readily actuated to allow for selective mid-aspect opening and closing of such a region, and is readily adapted to new and existing sectional-type door assemblies.
The present invention is directed generically to a closure for a portal within a structure, and more specifically, to a closure such as a sectional-type door, comprising plural door panels wherein one or more door panels can be operated independently of the remaining door panels and thereby the ingress point may be only partially occluded. Presently, sectional-type doors are used to block ingress/egress into permanent structures such as commercial and residential garages, and on a reduced scale, to block ingress/egress into mobile structures such as panel vans and storage containers. Heretofore, sectional-type doors have typically been employed wherein the sectional door traverse tracks located on either side of a portal as a linked series of door panels. Due to the means by which the series of door panels are linked, a sectional-type door may only be in one of three states relative to the portal opening: fully closed to a lower aspect, fully open to an upper aspect, and partially open wherein the sectional-type door depends from an upper aspect and thereby providing an unoccluded gap in the lower aspect. By modifying the means by which an individual door panel is linked to neighboring panels, it is possible to independently operate one or more sectional-type door panels and thereby provide an opening in a portal occluded by a sectional-type door wherein a lower aspect of the portal opening is occluded and an opening is provided at a mid-aspect point, above the lower aspect and below the upper aspect.
A first preferred embodiment of the present invention is directed to a sectional-type door wherein at least one door panel within the sectional-type door assembly can be disengaged from one or more neighboring door panels. Upon disengaging a door panel from a neighboring panel, the construction allows for the creation of a partial occlusion across a portal. This partial occlusion can be located at an operative height above the effective height of at least one door panel positioned in the lower aspect of the portal opening and below a door panel positioned in the upper aspect of the portal opening. Further, the partial occlusion is formed within the vertical plane of the sectional-type door such that no incremental space is required for effective partial occlusion formation than that required by the sectional-type door itself.
A further embodiment of the present invention is directed to a sectional-type door wherein at least two door panels within the sectional-type door assembly can be disengaged from one or more neighboring door panels. Upon disengaging a door panel from a neighboring panel allows for the creation of a partial occlusion across a portal. This partial occlusion can be located at a first operative height above the effective height of at least one door panel positioned in the lower aspect of the portal opening and below door panel positioned in the upper aspect of the portal opening. The first operative height can then be adjusted to a second operative height by resetting the engagement of the first panel and disengaging the same or different door panel at a second location. Further, the partial occlusion is formed within the vertical plane of the sectional-type door such that no incremental space is required for effective partial occlusion formation than that required by the sectional-type door itself.
A further embodiment of the present invention is directed to representative means for effecting disengagement of at least one door panel from a neighboring or sequential door panel. The representative means allows for the ready disengagement of a hinge point such that the hinge point separates into an upper and lower element. The upper and lower elements may then be readily re-engaged such that the normal hinge operation is returned.
Other features and advantages of the present invention will become apparent from the following more detailed description, taken in conjunction with the accompanying drawings, which illustrate, by way of example, the principles of the invention.
The invention will be more easily understood by a detailed explanation of the invention including drawings. Accordingly, drawings, which are particularly suited for explaining the inventions, are attached herewith; however, it should be understood that such drawings are for descriptive purposes only and as thus are not necessarily to scale beyond the measurements provided. The drawings are briefly described as follows:
a is back-side view of two partial door panels linked by a representative disengagable hinge assembly, wherein the hinge elements are linked and the door panels operate in a sequential articulated manner;
b is a back-side view of two partial door panels linked by a representative disengagable hinge assembly, wherein a translatable axle has been slidably released from the axis of rotation between an upper and lower hinge elements;
c is a back-side view of two partial door panels linked by a representative disengagable hinge assembly, wherein the upper and lower hinge elements have been delinked at the axis or rotation such that an upper door panel can operate independently from a lower door panel and thereby create a partial occlusion space;
a is a frontal view of a representative disengagable hinge on the left and right side of a portal with manually operated translatable axles herein shown in a delinked position, wherein the translatable axles of the left and right side disengagable hinge assemblies are operated by a common actuator;
b is a frontal view of a representative disengagable hinge on the left and right side of a portal with manually operated translatable axles herein shown in a linked position, wherein the translatable axles of the left and right side disengagable hinge assemblies are operated by a common actuator;
a is a frontal view of a representative disengagable hinge wherein the upper and lower hinge plates include a equal number of hinge pivots respectively;
b is a frontal view of a representative disengagable hinge wherein the lower hinge plate includes incrementally high number of hinge pivots relative to the upper hinge plate; and,
c is a frontal view of a representative disengagable hinge wherein the lower hinge plate includes hinge pivots bracketed by hinge pivots of the upper hinge plate.
With regard to reference numerals used, the following numbering are applied throughout the drawings: disengagable hinge assembly 10, upper hinge plate 12, upper hinge plate mounting holes 13, upper hinge plate reinforcement 14, upper hinge left-side pivot 15, upper hinge right-side pivot 16, actuation handle 20, external actuation rod 22, actuation rod guide 24, internal actuation rod 26, translatable axle 28, guide mount 30, guide rails 32, actuator housing 34, actuator biasing means 38, lower hinge plate 42, lower hinge plate mounting holes 43, lower hinge plate reinforcement 44, lower hinge left-side pivot 45, lower hinge right side pivot 46, track follower mounting assembly 48, track follower assembly 50, upper track follower assembly 52, lower track follower assembly 54, upper sectional door panel 60, lower sectional door panel 70, common actuator handle 80, and common actuator 82.
While the present invention is susceptible of embodiment in various forms, there is shown in the drawings and will hereinafter be described a presently preferred embodiment of the invention, with the understanding that the present disclosure is to be considered as an exemplification of the invention, and is not intended to limit the invention to the specific embodiment illustrated.
The upper hinge plate 12 (
The lower hinge plate 42 comprises optional lower hinge plate mounting holes 43, and at least one lower hinge pivot (Reference
Upper hinge plate 12 and lower hinge plate 42 each comprise at least one hinge pivot, which upon proper positioning of the upper hinge plate 12 to lower hinge plate 42 allow respective hinge pivots to share a common axis of rotation (“AR”).
Returning to
Actuation of guide mount 30 and associated translatable axle 28 is through force applied to internal actuation rod 26. Internal actuation rod 26 extends from a fixture point on guide mount 30 through an actuation rod guide 24. Actuation rod guide 24 allows for linear alignment between the internal actuation rod 26 and the guide mount and aids in ensuring a vector associated with the applied force is aligned ultimately with the translatable axle 28.
Internal actuation rod 26 is acted upon through mechanical linkage to external actuation rod 22. The mechanical linkage between external actuation rod 22 and internal actuation rod 26 may include such fitments as copending threads, interdigitated fixtures and direct attachment. It is within the purview of the present invention that external actuation rod 22 and internal actuation rod may define separate regions of a singular component rendering both functions. Further, it is also in the purview of the present invention that external actuation rod 22, internal actuation rod 26 and translatable axle 28 may define separate regions of a singular component rendering all related functions of the aforementioned elements.
As shown in
The presently described disengagable hinge assembly 10 can also be connected to one or more additional disengagable hinge assembly 10 such that operation of a single actuator will cause multiple such assemblies to engage or disengage.
The means of applying force to the actuator rods 22 and 26, and thereby to engage or disengage translatable axle 28 can range from manual, to semi-automatic, to completely automatic operation. Any suitable means for applying a force to the actuation rod can be employed. Ball and screw, rack and pinion, and piston/solenoid actuation mechanisms can be manually operated or motivated by a motor, pneumatic, hydraulic or direct electrical power source.
The components comprising disengagable hinge assembly 10 described heretofore may be formed by conventional manufacturing means and of suitable base materials. By way of description, manufacturing processes including rolling, stamping, casting, forging, and extrusion technologies are appropriate technologies for fabricating one or more of the listed components. Suitable materials for individual components include ferrous metals, non-ferrous metals, polymers, modified polymers and the laminates, composites and other combinations thereof. Exemplary ferrous metals include galvanized steel, mild steel, tool steel and stainless steel. Nonferrous metal may include aluminum, tin, bronze, copper and alloys thereof. Polymers include thermoplastic, thermoset, naturally derived compositions and combinations thereof. Modified polymers include previously mentioned polymers further comprising performance modifying (i.e. polymer alloys, fiber reinforcement) and aesthetic modifying (i.e. colorants, pigments and lubricous agents) additives.
From the foregoing, it will be observed that numerous modifications and variations can be affected without departing from the true spirit and scope of the novel concept of the present invention. It is to be understood that no limitation with respect to the specific embodiments illustrated herein is intended or should be inferred. The disclosure is intended to cover, by the appended claims, all such modifications as fall within the scope of the claims.