The present invention relates to an LED lamp, and more particularly, to a sectional LED lamp.
A light-emitting-diode (LED) lamp has the advantages of high brightness, high reliability, extended usable life, and low power consumption, and therefore has been widely applied in different fields, such as signboards and general illumination.
Conventionally, an LED lamp includes a base portion and a lamp portion, with LED chips provided in the lamp portion. And, an LED driving unit is provided in the base portion for driving the LED chips to emit light.
The conventional LED lamp has a one-piece structure with integrally formed base portion and lamp portion. While the one-piece LED lamp enables convenient installation thereof, it has the following disadvantages in practical use thereof:
Therefore, the conventional one-piece LED lamp has relatively poor applicability and design flexibility, and requires improvements.
A primary object of the present invention is to provide a sectional LED lamp that has independently replaceable lamp and base portions.
Another object of the present invention is to provide a sectional LED lamp that provides improved heat-radiating effect, good applicability, and high design flexibility.
A further object of the present invention is to provide a sectional LED lamp that is environment-friendly.
To achieve the above and other objects, the sectional LED lamp according to the present invention includes a base portion, a lamp portion, and a connecting unit. The base portion includes a base body having a first end and a second end opposite to the first end. An LED driving unit is provided in the base body, and a connecting terminal is provided at the first end of the base body and electrically connected to the LED driving unit and a power supply. The lamp portion includes a lamp body detachably connected to the base body and has a first end and a second end opposite to the first end. The first end of the lamp body is adjacent to the second end of the base body. The lamp portion further includes a lampshade fitted around the lamp body and having an open front end. At least one LED chip is arranged in a space defined in the open front end of the lampshade and electrically connected to the second end of the lamp body. The connecting unit is located between the second end of the base body and the first end of the lamp body for electrically connecting the LED driving unit to the LED chips, and detachably connecting the lamp portion to the base portion. After the base portion is connected to the lamp portion, a space is maintained between the second end of the base body and a rear end of the lampshade, so that heat generated by the LED chip may be effectively dissipated into surrounding air via the space between the base body and the lampshade.
In the sectional LED lamp of the present invention, the connecting unit preferably includes a coupling socket formed at the second end of the base body for accommodating the first end of the lamp body therein. The connecting unit further includes two slots spaced on a bottom of the coupling socket and electrically connected to the LED driving unit, and two conducting pins protruded from the first end of the lamp body and electrically connected to the LED chip. The conducting pins are inserted into the slots and electrically connected thereto.
In the sectional LED lamp of the present invention, the connecting unit preferably further includes at least one stopper located on an inner surface of the coupling socket and at least one wing portion formed on an outer surface at the first end of the lamp body. The stopper and the wing portion are engaged with each other to more firmly connect the lamp portion to the base portion when the first end of the lamp body is extended into the coupling socket.
In the sectional LED lamp of the present invention, it is preferable to form a plurality of spaced heat-radiating members on an outer surface of the lampshade to enable an enhanced heat-radiating effect.
In the sectional LED lamp of the present invention, it is preferable a transparent member is covered onto the open front end of the lampshade, allowing light emitted from the LED chip to pass through the transparent member.
In the sectional LED lamp of the present invention, it is preferable two watertight sealing members are separately mounted around the base body and the lamp body at joints between the connecting unit and the base body and the lamp body, such that the two watertight sealing members are pressed against each other in a water-tight relation when the lamp body is inserted into the coupling socket.
The structure and the technical means adopted by the present invention to achieve the above and other objects can be best understood by referring to the following detailed description of the preferred embodiments and the accompanying drawings, wherein:
Please refer to
Please also refer to
The lamp portion 2 includes a lamp body 21, a lampshade 22, at least one LED chip 23, a transparent member 24, and a plurality of heat-radiating members 25.
The lamp body 21 is substantially cylindrical in shape, and has a first end 211 and a second end 212 opposite to the first end 211. The first end 211 is adjacent to the second end 112 of the base body 11 of the base portion 1.
The lampshade 22 is substantially in the form of a hollow truncated cone. The lampshade 22 is fitted around the lamp body 21 and has an open front end 221. In the illustrated preferred embodiment, the lampshade 22 is made of a heat-conducting metal material for reflecting light and radiating heat.
The LED chip 23 is arranged in a space defined in the open front end 221 of the lampshade 22 and electrically connected to the second end 212 of the lamp body 21. Power is supplied to the LED chip 23 from the power supply via the connecting terminal 13 on the base body 11 of the base portion 1, and is driven by the LED driving unit 12 to emit light. In the illustrated preferred embodiment, there are five LED chips 23. However, it is understood the number of the LED chips 23 and the color of light emitted from the LED chips 23 are changeable as necessary without being limited to the illustrated preferred embodiment.
The transparent member 24 is substantially a flat plate covered onto the open front end 221 of the lampshade 22, allowing the light emitted from the LED chips 23 to pass through the transparent member 24.
The heat-radiating members 25 are equally spaced on and connected to an outer surface of the lampshade 22 to give the lampshade 22 an increased heat-radiating surface area and accordingly, an enhanced heat-radiating effect. In the illustrated preferred embodiment, the heat-radiating members 25 are integrally formed on the outer surface of the lampshade 22 to radially extend outward and angular space from one another. However, the heat-radiating members 25 may be otherwise linearly arranged on the lampshade 22 or arranged in a combined manner with some linearly arranged and some radially arranged heat-radiating members 25 without being restricted to any specific manner of arrangement.
The connecting unit 3 is located between the second end 112 of the base portion 1 and the first end 211 of the lamp portion 2 for electrically connecting the LED driving unit 12 to the LED chips 23. In addition, the connecting unit 3 also detachably connects the lamp portion 2 to the base portion 1.
Referring to
The connecting unit 3 further includes two stoppers 33 spaced on an inner surface of the coupling socket 1, and two wing portions 34 spaced on an outer surface at the first end 211 of the lamp body 21. When the conducting pins 32 are inserted into the slots 31, the wing portions 34 are at the same time engaged with the stoppers 33 to firmly connect the lamp portion 2 to the base portion 1. As can be seen from
To assemble the sectional LED lamp of the present invention, first place the first end 211 of the lamp body 21 in the coupling socket 35 on the base portion 1 with the conducting pins 32 inserted into the slots 31 on the base portion 1. Then, turn the lamp portion 2 to engage the wing portions 34 with the stoppers 33 in the coupling socket 35. At this point, the lamp portion 2 is firmly detachably connected to the base portion 1 and is electrically connected with the power supply via the base portion 1. Therefore, the LED chips 23 may be driven by the LED driving unit 12 to emit light.
By providing two separate base portion 1 and lamp portion 2 that can be detachably connected together via a connecting unit 3, the sectional LED lamp of the present invention provides the following advantages:
Moreover, to prevent damaged electronic elements in the base portion 1 of the sectional LED lamp due to invasion by water and moisture, the watertight sealing members 4 are separately disposed around the base body 11 of the base portion 1 and the lamp body 21 of the lamp portion 2 at joints between the connecting unit 3 and the base body 11 and the lamp body 21. After the lamp portion 2 and the base portion 1 are fully assembled, the two watertight sealing members 4 are tightly pressed against each other in a water-tight relation to prevent water from permeating into the LED lamp. In the illustrated preferred embodiment, the watertight sealing members 4 are made of a rubber material.
In brief, in the sectional LED lamp of the present invention, with the separate lamp portion and base portion detachably physically and electrically connected together via the connecting unit, the damaged lamp portion or base portion can be independently replaced to save cost and meet environmental protection, heat generated by the LED chips can be effectively dissipated, and the lamp portion may be flexibly designed. Moreover, the mounting of the watertight sealing members effectively protects internal electronic element against damage by invaded water to thereby ensure extended usable life of the sectional LED lamp.
The present invention has been described with a preferred embodiment thereof and it is understood that many changes and modifications in the described embodiment can be carried out without departing from the scope and the spirit of the invention that is intended to be limited only by the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
6685339 | Daughtry et al. | Feb 2004 | B2 |
6787999 | Stimac et al. | Sep 2004 | B2 |
7226189 | Lee et al. | Jun 2007 | B2 |
7559674 | He et al. | Jul 2009 | B2 |
20070230188 | Lin | Oct 2007 | A1 |
Number | Date | Country | |
---|---|---|---|
20090290382 A1 | Nov 2009 | US |